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Abstract

Medical image segmentation is crucial for disease diagnosis and monitoring, but existing methods face
challenges in capturing both local and global features efficiently. Convolutional Neural Network (CNN)-
based approaches such as UNet, excel at modeling local features but struggle with capturing long-range
features. Transformer-based methods, such as Swin-UNet, can model global context but lack the spatial
inductive bias needed for local feature extraction. Hybrid methods such as TransUNet and CS-UNet,
which combine CNNs and Transformers, have shown promise but often come with increased model
complexity and computational cost, limiting their practical applicability. To address these limitations,
we propose a neural network GC-UNet a lightweight and efficient segmentation network that leverages
the Global Context Vision Transformer (GC-ViT) in its encoder and decoder. GC-UNet combines global
context self-attention with local self-attention to model both long and short-range spatial dependencies
effectively. For further enhancement, we also introduce two variations of GC-UNet: (1) Hi-GC-UNet,
which adds depthwise convolution to improve local feature extraction, and (2) ECA-GC-UNet, which
replaces the Squeeze-and-Excitation (SE) block with Efficient Channel Attention (ECA) block to reduce
model complexity in the encoders and decoders.
The proposed methods and its variants are evaluated on multiple medical image datasets, including the
Synapse multi-organ abdominal CT dataset, the ACDC cardiac MRI dataset, and several Polyp seg-
mentation datasets. In terms of Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD) metrics,
GC-UNet outperforms CNN-based and Transformer-based approaches, with notable gains in the segmen-
tation of complex anatomical structures. Hi-GC-UNet performs better than GC-UNet for ACDC dataset
with slightly larger model size. ECA-GC-UNet performs better than GC-UNet for most datasets with
slightly smaller model size.
Furthermore, pre-training GC-UNet on the MedNet dataset, which contains over 200,000 medical images,
yields better performance than pre-training on natural images (ImageNet). The proposed GC-UNet and
its variants offer a practical and efficient solution for medical image segmentation, making them suitable
for real-world clinical applications.
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1 Introduction

Medical image segmentation plays a crucial role in modern healthcare, enabling accurate disease diagno-
sis, treatment planning, and progression monitoring. Automated segmentation of anatomical structures and
pathological regions from medical images, such as CT scans and MRIs, provides valuable quantitative infor-
mation for clinicians. However, medical image segmentation is a challenging task due to the complexity of
anatomical structures, variability in image quality, and the need to capture both local details and global
context.

Existing segmentation methods can be broadly categorized into CNN-based and Transformer-based
approaches. CNN-based methods, such as UNet [1] and its variants (e.g., UNet++ [2], Att-UNet [3]), excel
at capturing local features due to their convolutional operations. However, they struggle to model long-
range dependencies, which are essential for segmenting large or complex structures. On the other hand,
Transformer-based methods, such as Swin-UNet [4] and TransDeepLab [5], leverage self-attention mecha-
nisms to capture global context. While these methods perform well in modeling long-range dependencies,
they often lack the spatial inductive bias needed for effective local feature extraction, leading to suboptimal
performance in segmenting small or intricate structures.

Past research explored CNN-Transformer hybrid architectures such as TransUnet [6] to capture global
and local information but these models often significantly increase the number of parameters. This, in turn,
translates to higher computational complexity, potentially limiting their practical applications.

Recently, Hatamizadeh et al. [7] proposed a Global Context Vision Transformer (GC-ViT) that leverages
global context self-attention modules and is joined with local self-attention to effectively and efficiently
model both long and short-range spatial interactions. GC-ViT achieved state-of-the-art results across image
classification, object detection, and semantic segmentation tasks.

The strength of GC-ViT is its small model size though there is no detailed comparison with the
state-of-the-art methods for medical image segmentation. In this paper, we investigate the performance of
segmentation algorithms using GC-ViT. To this end, we introduce GC-UNet, a UNet-like segmentation net-
work that captures long and short-range semantic features using GC-ViT [7] as encoders and decoders. This
architecture enhances performance while requiring fewer model parameters, with higher inference speed, and
lower computational complexity. As further enhancements, we also explored two variations of GC-UNet.

1. Since GC-ViT only uses convolution for downsampling, it is unclear whether parallel application of
convolution can improve its performance in smaller objects. To answer this question, we extended GC-
UNet with parallel depthwise convolution in the encoders and decoders. The resulting architecture, Hi-
GC-UNet, has better performance for ACDC dataset with slightly higher model complexity.

2. GC-ViT uses Squeeze-and-Excitation (SE) block in its feature extraction and downsampling modules to
adaptively recalibrate channel-wise feature responses. To further reduce model complexity, we replaced
the SE block in GC-ViT with the Efficient Channel Attention (ECA) block, which models channel rela-
tionships directly. The resulting architecture, ECA-GC-UNet, has better performance than GC-UNet in
most datasets.

We evaluated the segmentation and runtime performance of GC-UNet and its variations on several
medical image datasets including Synapse, ACDC, and several polyp image datasets. Our results show
that GC-UNet has better or comparable performance than the state-of-the-art segmentation algorithms
including CNN-based, Transformer-based, and hybrid segmentation networks. Also, GC-UNet has smaller
model sizes and uses the least amount of training and inference time. In addition, we pre-trained GC-UNet
on both ImageNet and MedNet, which is a set of 200,000 medical images collected from public sources. GC-
UNet pre-trained on in-domain images (i.e. MedNet) yielded better accuracy than GC-UNet pre-trained on
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natural images (i.e. ImageNet). Hi-GC-UNet has better performance than GC-UNet in ACDC dataset with
slight increase in model size. We speculate that the improvement is related to the inclusion of depthwise
convolution, which is better at detecting local features of the smaller objects. ECA-GC-UNet has better
performance than GC-UNet in most datasets and its model size is smaller due to the use of ECA blocks.

To summarize, we make the following contributions.

1. We propose GC-UNet, a lightweight segmentation network based on GC-ViT, which achieves state-of-
the-art performance on multiple medical image datasets.

2. We introduce two variants of GC-UNet (Hi-GC-UNet and ECA-GC-UNet) to further enhance its
performance and efficiency.

3. We demonstrate that pre-training GC-UNet on the MedNet dataset, which contains over 200,000 medical
images, yields better performance than pre-training on natural images (ImageNet).

4. We provide extensive experimental results showing that GC-UNet outperforms existing CNN-based,
Transformer-based, and hybrid methods in terms of segmentation accuracy, model size, and computational
efficiency.

The source code for the model is available at github.com/Kalrfou/GC-UNet.

2 Related work

Medical image segmentation has seen significant advancements with the adoption of deep learning techniques.
Existing methods can be broadly categorized into CNN-based, Transformer-based, and hybrid approaches,
each with its own strengths and limitations.

2.1 CNN-Based Methods

The CNN-based methods are widely used and regarded as one of the most prominent approaches for medical
image segmentation. Encoder-decoder based architectures, such as UNet [1] and its derivatives, have shown
exceptional efficacy in medical image segmentation. For instance, Att UNet [3] enhanced segmentation
through attention gates while UNet++ [8] introduced an alternative skip connection mechanism, nested
and dense, alleviating the semantic gap between levels of UNet to a certain degree. This modification yields
notable performance improvements compared to UNet. However, UNet++ cannot capture semantic features
at full scale. Huang et al. [9] proposed UNet3+ to maximize the use of full-scale feature maps by combining
low-level details from various scales with high-level semantics. CNN-based methods have found application in
diverse medical image segmentation tasks, such as retinal image segmentation [10] and skin segmentation [11],
showcasing promising performance and practicality in implementation and training. Segmentation algorithms
based on ResNet architecture have established its presence in medical image segmentation [12]. For example,
Res-UNet [13] enhanced retinal vessel segmentation with a weighted attention mechanism.

Despite their success, CNN-based methods struggle to model long-range dependencies due to their
localized receptive fields, which limits their performance in segmenting large or complex structures.

2.2 Transformer-Based Methods

Transformers, originally designed for natural language processing, have gained traction in medical image seg-
mentation due to their ability to model global context through self-attention mechanisms. The self-attention
mechanism (MSA) inherent in Transformers empowers them to perform global correlation modeling, enabling
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them to handle long-range dependencies effectively. Leveraging this capability, Transformers have made sig-
nificant strides in both natural language processing and computer vision tasks due to their superior global
modeling abilities. Several pioneering studies have introduced Transformer-based architectures for medical
image segmentation. Cao et al. [4] presented Swin-UNet, integrating a Swin Transformer [14] into a U-shaped
segmentation network for multi-organ segmentation. Azad et al. [5] proposed TransDeepLab for skin lesion
segmentation, enhancing DeepLab with diverse window strategies. Additionally, Huang et al., [15] introduced
MISSFormer to leverage global information across different scales for cardiac segmentation, while Azad et
al. [16] introduced TransCeption, refining the patch merging module to capture multi-scale representations
within a single stage.

Swin Transformer [14] introduced local-window-self-attention to reduce the cost so that it grows linearly
with the image size, used shifted-window-attention to capture cross-window information, and exploited
multi-resolution information with hierarchical architecture. However, the shifted-window-attention struggles
to capture long-range information due to small coverage area of shifted-window-attention and lacks inductive
bias like ViT [17].

2.3 Hybrid Methods

While Transformers excel at capturing global context, they often lack the spatial inductive bias inherent in
CNNs, making them less effective at modeling local features, especially in small or intricate structures. To
address the limitations of both CNNs and Transformers, hybrid approaches have been proposed, combining
the strengths of both architectures.

TransUNet [6] integrated Transformers into the encoder of a U-Net, enabling the model to capture
both local and global features. However, this approach significantly increases the number of parameters
and computational complexity. HiFormer [18] introduced a hierarchical multi-scale Transformer for medical
image segmentation, achieving state-of-the-art results on several benchmarks. CS-UNet [19] proposed a
generalizable and flexible segmentation algorithm by combining CNNs and Transformers, demonstrating
improved performance on diverse medical imaging tasks.

Combining convolution operations with a Transformer on the encoder side, Transclaw UNet [20] enables
detailed segmentation and long-distance relationship learning. UNETR [21] adopts the sequence-to-sequence
prediction for 3D medical image segmentation. These developments underscore the transformative impact
of Transformer-based approaches on medical image segmentation, charting a path toward broader adoption
and deep learning advancement.

2.4 Benchmarks in Medical Image Segmentation

Several benchmarks have been widely used to evaluate medical image segmentation methods:

1. The Synapse multi-organ segmentation dataset provides abdominal CT images for evaluating the
segmentation of multiple organs, such as the liver, pancreas, and kidneys [4–6, 9, 15, 18, 19, 22].

2. The ACDC cardiac MRI dataset focuses on the segmentation of cardiac structures, including the left
ventricle, right ventricle, and myocardium [4, 6, 15, 19, 22].

3. Polyp segmentation datasets, such as CVC-ClinicDB and Kvasir-SEG, are used to evaluate the detection
and segmentation of polyps in colonoscopy images [2, 19, 23].

These benchmarks have been instrumental in driving advancements in medical image segmentation,
providing standardized datasets for comparing different methods.
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3 GC-UNet Architecture

Fig. 1 An illustration of the local and global attention mechanisms in GC-ViT [7]. Local attention is computed on feature
patches within local window only (left). The global attention mechanism extracts query patches from the entire input feature
map, aggregating information from all windows. The global query is interacted with local key and value tokens, hence allowing
to capture long-range information.

The core component of GC-UNet is GC-ViT block, the local and global attention mechanisms of which
are illustrated in Figure 1. GC-ViT [7] is a hierarchical architecture like Swin Transformer but utilizes
global-window attention instead of shifted-window attention for effectively capturing long-range information.
GC-ViT also uses convolution layers for downsampling to provide the network with desirable properties such
as locality bias and cross-channel interactions which are missing in both ViT and Swin Transformer. GC-
ViT has 4 stages, each of which consists of alternating blocks of local and global Multi-head Self-Attention
(MSA) layers. As shown in Figure 1, at each stage, global query tokens are computed by using novel fused
inverted residual blocks that encompass global contextual information from different image regions. While
the local self-attention modules are responsible for modeling short-range information, the global query tokens
are shared across all global self-attention modules to interact with local key and value representations.

As shown in Figure 2, Each GC-ViT block includes a local and global Multi-head Self-Attention (MSA),
Multilayer Perceptron (MLP), a Global Token Generator (GTG) and a downsampling layer. The GTG
component adds global context to the computations. Local MSA can only query patches within a local
window, while global MSA can query different image regions while still operating within the window. At
each stage, the global query component is pre-computed. The block also introduces a CNN-based module
in the downsampling layer to include inductive bias, a useful feature for images that have been missing in
both ViT and Swin Transformer.

GC-UNet is a GC-ViT-based U-shaped Encoder-Decoder architecture with skip-connections for long and
short-range semantic feature learning. As shown in Figure 3, the GC-UNet consists of encoder, bottleneck,
decoder, and skip connections.

1. Both encoder and decoder used GC-ViT [7] to model long and short-range spatial interactions, without
the need for expensive operations such as computing attention masks or shifting local windows.
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Fig. 2 A GC-ViT block has a local and global attention, a global token generator, and a downsampling layer.

Fig. 3 GC-UNet architecture includes encoders, bottlenecks, skip connections, and decoder. Encoder, bottleneck and decoder
are all constructed based on GC-ViT block

2. At each stage, the GC-ViT encoder and decoder consist of alternating local and global self-attention
modules to extract spatial features. Both operate in local windows like Swin Transformer.
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Fig. 4 Fused-MBConv module

3. Skip connections concatenate the feature maps from the GC-ViT encoder with the corresponding decoder
stages. The bottleneck is employed to acquire the deep feature representation, maintaining both feature
dimension and resolution unchanged within this component.

4. The downsampler between stages in the encoder part and upsampler between stages in the decoder part
provide desirable properties such as inductive bias and modeling of inter-channel dependencies.

Within the encoder, the initial image is partitioned into four patch blocks, which act as input for the
four-stage GC-VIT module. Following the encoding process, the image dimensions are decreased to (H/32)
× (W/32). In the decoder, the upsample operations are utilized to increase the image dimensions by 2 and
reduce the number of channels by 2. The features from each stage of the encoder are concatenated with
their corresponding stage in the decoder using skip connections. The decoder accomplishes its task through
upsampling.

3.1 Encoder

The encoder utilizes a hierarchical GC-ViT approach to acquire feature representations at various resolutions.
This is achieved by reducing spatial dimensions while simultaneously increasing embedding dimensions by a
factor of 2 across 4 stages. Initially, the input image x ∈ RH×W×3 undergoes processing through the patchify
layer. This layer comprises a 3× 3 convolution operation with a stride of 2, along with padding, to generate
overlapping patches. Subsequently, these patches are projected into an embedding space of dimension C via
another 3×3 convolution layer. After each stage in the GC-ViT backbone, the spatial resolution is decreased
while the number of channels is increased through a downsampling layer. This downsampling operation helps
in extracting hierarchical features at different resolutions.

3.2 Downsampler

The downsampler incorporates the fused-MBConv module to generates hierarchical representations by inject-
ing inductive bias into the network and modeling inter-channel correlations, where a convolution layer with
a kernel size of 3 and a stride of 2 is used to downsample the spatial feature resolution by 2 while doubling
the number of channels. The fused-MBConv module, as shown in Figure 4, includes DW-Conv3×3, GELU,
SE, and Conv1×1. The fused-MBConv operation can be defined by the following equations:

x̂ = DW-Conv3×3(x),

x̂ = GELU(x̂),

x̂ = SE(x̂),
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x = Conv1×1(x̂) + x.

where DW-Conv refers to depthwise convolution, SE refers to the Squeeze and Excitation block, and GELU
represents the Gaussian Error Linear Unit function.

3.3 Bottleneck

Similar to Swin-UNet [4], two GC-ViT blocks are used for bottleneck construction. The bottleneck is strate-
gically designed to facilitate the learning of deep feature representations. Within this structure, the feature
dimension and resolution remain unchanged.

3.4 Decoder

The symmetric decoder, corresponding to the encoder, is constructed using the GC-ViT Transformer block.
The decoder mirrors the encoder design, replacing the patchy block with an unpatched block, the embed-
ding layer with a de-embedding layer, and the downsample block with an upsample block. The decoder’s
upsample block replaces the encoder’s downsample block. The upsample block restructures the feature map
of adjacent dimensions into a higher-resolution feature map and reduces the feature dimension by half. This
upsample block effectively increases the spatial resolution while refining and normalizing feature representa-
tions, making it suitable for decoding and reconstructing higher-resolution features in segmentation models.
The skip connection fuses the features of the encoder with the deep features recovered from the up-sample,
therefore mitigating the loss of spatial data produced by the downsampling.

3.5 Hi-GC-ViT Architecture

GC-ViT is lightweight since it does not include expensive convolution operation though this may impact
the segmentation accuracy of small objects. To remedy this deficiency, we evaluated the effect of adding
depthwise convolution [24] to the algorithm. Depthwise convolution is much more efficient than traditional
convolution since it applies separate convolution to each channel. To this end, we developed an architecture,
Hi-GC-UNet, whose encoders and decoders include the depthwise convolution blocks running in parallel to
the GC-ViT blocks. These components are designed to extract both local and global features from input
images, enhancing the model’s ability to capture fine-grained details and long-range dependencies.

The convolution block, as shown in the left side of Figure 5 is designed to extract local features from
input images. The block utilizes a series of convolution operations followed by batch normalization to refine
the feature maps. Specifically, it consists of:

• Depthwise convolution: A depthwise convolution is performed on the input feature maps using a
3 × 3 kernel with a stride of 1. This operation is followed by a ReLU activation function to introduce
non-linearity.

• Pointwise convolution: A 1 × 1 pointwise convolution is then applied to combine the output of the
depthwise convolution across the channel dimension.

• Normalization: The resulting feature map is normalized using batch normalization to stabilize the
learning process.

• Residual connection: A residual connection is added between the input and the normalized output,
enabling better gradient flow during training.
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Fig. 5 A Hi-GC-ViT block combines depthwise convolution operations with a GC-ViT block.

The output of the convolution block is a refined feature map that captures local patterns in the input image.
The combination of the convolution block and GC-ViT block allows for a comprehensive feature extraction
process, effectively capturing both local details and global relationships in the input images.

3.6 ECA-GC-ViT Architecture

The Efficient Channel Attention (ECA) [25] block, a refined version of the Squeeze-and-Excitation (SE)
block, enhances channel attention mechanisms in convolutional neural networks. Unlike the SE block’s
indirect approach, the ECA block directly models interactions between each channel and its K-nearest
neighbors. This, coupled with an adaptive kernel size determined based on the number of channels, leads to
a more efficient and effective block. In our ECA-GC-UNet architecture, we replace the SE block in the GC-
ViT with the ECA block to reduce computational complexity and achieve improved performance. As shown
in Figure 6, we also replace the SE block with the ECA block in the Fused-MBConv module to further
enhance the model’s efficiency and effectiveness.

Fig. 6 Modified Fused-MBConv module
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4 Pre-training on MedNet dataset

The majority of CNN and Transformer-based segmentation models are pre-trained on natural images such
as ImageNet. However, this is suboptimal for medical image segmentation due to the semantic gap between
natural and medical image modalities [19, 26]. In this work, we pre-trained the GC-ViT [7] model, specifically
GCVit xxTiny, on a large medical image dataset called MedNet that contains more than 200,000 medical
images collected from several public datasets [27] and Kaggle [28–30].

MedNet consists of different types of microscopy images such as X-ray, computed tomography (CT),
optical coherence tomography (OCT), and MRI. Images in MedNet are divided into 65 classes. Similar to
the approach of Stuckner et al. [31] and Alrfou et al. [19], the MedNet dataset is divided into training
and validation sets, with each class having 100 images in the validation set, resulting in 96.75%/3.25%
training/validation split. Using 100 images per class for validation is sufficient to obtain reliable accuracy
metrics and to prevent overfitting during training. Although the validation sets are balanced, the training
sets exhibited some class imbalance. There are a few classes, each of which contains less than 0.12% of the
total images. Three classes contain 6.2% of the images. Most classes have over 2000 images representing
one to two percent of the training set. MedNet includes images from various modalities such as X-ray, CT,
OCT, and MRI, and encompassed a wide range of medical diseases such as Kidney Cancer, Cervical Cancer,
Alzheimer’s, Covid-19, Pneumonia, Tuberculosis, Monkeypox, Breast Cancer, and Malaria.

We trained and tested GC-ViT xxTiny with the AdamW optimizer [32] for 100 epochs with an initial
learning rate of 0.0001, weight decay of 0.05, and cosine decay scheduler. The training data had been
augmented using the albumentations library, which included random changes to the contrast and brightness,
vertical and horizontal flips, photometric distortions, and added noise.

The training process continued until the validation score showed no improvement, employing an early
stopping criterion with a patience of 10 epochs. Performance was evaluated using top-1 and top-5 accuracy
metrics. Top-1 accuracy measures the percentage of test samples for which the correct label is the top
prediction, while top-5 accuracy measures the percentage of test samples for which the correct label appears
within the top five predictions. The top-1 accuracy of the GC-ViT xx-Tiny model is 82.3%, and the top-5
accuracy is 98.2%.

5 Experimental Evaluation

5.1 Dataset

To evaluate the effectiveness of our proposed method, we utilized multiple medical image datasets, including
the Synapse multi-organ abdominal CT dataset, the ACDC cardiac MRI dataset, and several Polyp seg-
mentation datasets. These datasets were chosen to assess the performance of GC-UNet across a variety of
medical imaging tasks, including organ segmentation, cardiac structure segmentation, and polyp detection.

Synapse Synapse multi-organ segmentation dataset (Synapse) includes 30 patient cases with 3779 axial
abdominal clinical CT images, where 18 cases are used for training and 12 cases are used for testing. The
dataset contains 8 abdominal organs (aorta, gallbladder, left kidney, right kidney, liver, pancreas, spleen,
and stomach). Each CT volume includes 85 ∼ 198 slices of 512 × 512 pixel images, with a voxel spatial
resolution of [0.54 ∼ 0.54]× [0.98 ∼ 0.98]× [2.5 ∼ 5.0] mm3.

ACDC Automated Cardiac Diagnosis Challenge dataset (ACDC) [33] compiles MRI scan results of various
patients from the MICCAI 2017 dataset. The ACDC dataset contains 100 cardiac MRI scans, each contain-
ing three organs: the right ventricle (RV), the myocardium (Myo), and the left ventricle (LV). Following
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TransUNet [6], we partitioned the dataset into 70 training cases, 10 validation cases, and 20 test cases.

Polyp We used 5 polyp datasets with early colorectal cancer diagnosis images. The CVC-ClinicDB [34] and
Kvasir-SEG [35] datasets are used for binary segmentation. The CVC-ClinicDB dataset contains 612 RGB
colonoscopy images with labeled olyps from MICCAI 2015 with a pixel resolution of 288× 384. The Kvasir-
SEG dataset contains 1000 polyp images with a pixel resolution ranging from 332× 487 to 1920× 1072 and
their corresponding ground truth. Following the setting in PraNet [23], we used 900 images from the CVC-
ClinicDB dataset and 548 images from the Kvasir dataset for training. The remaining 64 images from CVC-
ClinicDB and 100 images from Kvasir were used as test sets. To evaluate the generalization performance,
we tested the model on three unseen datasets: CVC-300 [36], CVC-ColonDB, and ETIS-LaribDB.

Evaluation Method To evaluate the performance of our segmentation model, we used the Dice Similarity
Coefficient (DSC) and the 95th percentile Hausdorff Distance (HD95).

1. The Dice Similarity Coefficient (DSC) is a metric used to evaluate the similarity between the predicted
segmentation and the ground truth segmentation in medical image analysis. It is defined as:

DSC =
2 · TP

2 · TP + FP + FN

where:

TP (True Positive) is the number of pixels that are correctly classified as the region of interest in the
predicted segmentation and are also present in the ground truth segmentation.
FP (False Positive) is the number of pixels that are incorrectly classified as the region of interest in the
predicted segmentation but are not present in the ground truth segmentation.
FN (False Negative) is the number of pixels that are part of the region of interest in the ground truth
segmentation but are not classified as such in the predicted segmentation.

2. The HD95 is defined as:
HD95(A,B) = Percentile (DA→B ∪DB→A, 95)

where:

A is the set of points in the predicted segmentation,
B is the set of points in the ground truth segmentation,
DA→B = {minb∈B d(a, b) | a ∈ A} is the set of distances from each point in A to the nearest point in B,
DB→A = {mina∈A d(b, a) | b ∈ B} is the set of distances from each point in B to the nearest point in A,
d(a, b) is the Euclidean distance between points a and b,
Percentile(D, 95) is the 95th percentile of the combined set of distances D = DA→B ∪DB→A.

The HD95 metric is useful for evaluating boundary accuracy in medical image segmentation, as it reduces
sensitivity to outliers by focusing on the 95th percentile of distances.

5.2 Implementation

The GC-UNet is implemented with PyTorch library and the model is trained on an Nvidia GeForce GTX
TITAN X with 12 GB of memory. The input image size was reduced to 224×224 pixels for consistency, and
data augmentation techniques (e.g., random cropping, flipping, and rotation) were applied during training
to improve model robustness. Our model is trained with batch size 24, learning rate 0.0001, and AdamW
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optimizer with momentum 0.9 and weight decay 0.0001. The loss function was a weighted combination of
Dice loss (0.3) and cross-entropy loss (0.7). The model was trained for 150 epochs on the Synapse and ACDC
datasets, while the Polyp dataset was trained for 100 epochs.

5.3 Results

We compared GC-UNet with several state-of-the-art methods, including CNN-based, Transformer-based,
and hybrid methods. Table 1 summarizes the list of methods that used in our experiments.

Table 1 List of the related networks included in our
experiments.

Architecture Method

CNN

U-Net [1]
Att-UNet [3]
R50-UNet [6]
R50-AttUNet [6]
UNet++ [2]
PraNet [23]

Transformer
Swin-UNet [4]
TransDeepLab [5]
MISSForme [15]

Hybrid CNN and Transformer

TransUNet [6]
HiFormer [18]
R50-ViT [17]
CS-UNet [19]
GPA-TUNet [22]

5.3.1 Synapse

Performance of GC-UNet and Its Variants

We evaluated the performance of GC-UNet and its variants on the Synapse multi-organ abdominal CT
dataset, which includes 8 abdominal organs (aorta, gallbladder, left kidney, right kidney, liver, pancreas,
spleen, and stomach). The results are summarized in Table 2.

1. GC-UNet: GC-UNet achieved an DSC of 82.39% and an average HD of 15.94 mm, outperforming most
state-of-the-art methods. Specifically, GC-UNet performed exceptionally well on larger organs with clear
boundaries, such as the liver with DSC 94.64% and spleen with DSC 91.81%. However, it struggled
slightly with smaller organs like the gallbladder with DSC 69.32%, likely due to the difficulty in capturing
fine-grained details.

2. Hi-GC-UNet: The Hi-GC-UNet variant, which integrates depthwise convolution to enhance local feature
extraction, achieved an average DSC of 82.28% and an HD of 17.44 mm. While its overall performance
was slightly lower than GC-UNet, Hi-GC-UNet showed improvements in specific organs, such as the
gallbladder with DSC 70.79%, indicating that depthwise convolution is effective for detecting smaller
structures.

3. ECA-GC-UNet: The ECA-GC-UNet variant, which replaces the SE block with the ECA block, achieved
the best performance among the variants, with an average DSC of 82.54% and an HD of 16.50 mm. ECA-
GC-UNet performed particularly well on the right kidney with DSC 84.33% and spleen with DSC 91.79%,
demonstrating that the ECA block improves feature representation while reducing model complexity.
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Comparison with State-of-the-Art Methods

We compare GC-UNet with current state-of-the-art methods on the Synapse dataset, including U-Net,
Att-UNet, TransUnet, SwinUnet, MISSFormer, TransDeepLab, HiFormer, GPA-TUNet, and CS-UNet. The
results are summarized in Table 2.

GC-UNet with DSC 82.39% and HD 15.94 mm performs competitively with the best hybrid method,
CS-UNet with DSC 83.27 and HD 15.26 mm, while maintaining a smaller size and lower computational cost.
This demonstrates that GC-UNet archives a better trade-off between performance and efficiency, making it
more suitable for real-world clinical applications. Also, note that GC-UNet significantly outperforms CNN-
based methods UNet and Att-UNet. For instance, UNet has an average DSC of 76.85% and an average
HD of 39.70 mm and Att-UNet has an average DSC of 77.77% and an average HD of 36.02 mm. GC-UNet
has better performance than Transformer-based methods like Transdeeplab, MISSFormer, and Swin-UNet,
which has an average DSC ranging from 79.13 to 81.96% and an average HD ranging from 18.20 to 21.25 mm.

Table 2 Comparison of GC-UNet/Hi-GC-UNet and state-of-the-art algorithms on Synapse (the columns are average DSC in
%, average HD in mm, and DSC in % for each organ). Blue indicates the best result and red displays the second-best. The
superscript 1 and 2 indicate pre-training on ImageNet and MedNet respectively. Other models are pre-trained on ImageNet.

Algorithm DSC↑ HD↓ Aorta Gallbladder Kid(L) Kid(R) Liver Pancreas Spleen Stomach

U-Net [1] 76.85 39.70 89.07 69.72 77.77 68.60 93.43 53.98 86.67 75.58
Att-UNet [3] 77.77 36.02 89.55 68.88 77.98 71.11 93.57 58.04 87.30 75.75
Swin-UNet [4] 79.13 21.55 85.47 66.53 83.2 79.61 94.29 56.58 90.66 76.60
TransDeepLab [5] 80.16 21.25 86.04 69.16 84.08 79.88 93.53 61.19 89.00 78.40
MISSFormer [15] 81.96 18.20 86.99 68.65 85.21 82.00 94.41 65.67 91.92 80.81
TransUNet [6] 77.48 31.69 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62
GPA-TUNet [22] 80.37 20.55 88.74 65.63 83.51 80.37 94.84 63.89 87.58 78.40
HiFormer [18] 80.39 14.70 86.21 65.69 85.23 79.77 94.61 59.52 90.99 81.08
CS-UNet [19] 83.27 15.26 88.07 71.32 88.00 84.38 94.80 65.64 89.95 83.81
GC-UNet1 81.95 16.80 86.96 66.26 87.75 83.86 94.53 61.06 91.42 83.74
GC-UNet2 82.39 15.94 86.30 69.32 86.11 81.89 94.64 64.88 91.81 84.15
Hi-GC-UNet1 81.76 18.77 85.86 69.76 82.82 79.39 95.08 65.77 91.93 83.48
Hi-GC-UNet2 82.28 17.44 85.67 70.79 85.43 82.68 95.10 64.31 91.18 83.08
ECA-GC-UNet1 81.91 18.17 86.60 70.16 86.29 83.33 94.18 62.76 90.24 81.69
ECA-GC-UNet2 82.54 16.50 86.56 69.81 87.28 84.33 94.09 64.65 91.79 81.88

Organ-wise performance

Figure 7 shows qualitative comparison on two Synapse images, where GC-UNet has superior performance
than Swin-UNet and CS-UNet. GC-UNet segmented most of the organs correctly, with a few misclassifica-
tions in the gallbladder area. In comparison, Swin-UNet over-segmented the spleen (some areas belonging
to the spleen were misclassified as the left kidney) and CS-UNet over-segmented the pancreas. We speculate
that this improvement is due to the use of GC-ViT, which introduces a parameter-efficient downsampling
module with modified Fused MB-Conv blocks. These modifications address the lack of inductive bias in
ViTs, enabling GC-UNet to accurately capture relatively large regions and perform well with organs close
to each other.

The segmentation of larger organs with clear boundaries such as kidney, pancreas, and spleen require
the network to capture global features. We speculate that this is why Transformer-based models are more
accurate compared to CNN-based models. The segmentation of smaller organ like aorta benefits more from
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the detection of local features. This is probably why CNN-based models have more accurate results than
Transformed-based models. The segmentation of larger organs with complex boundaries, such as liver and
stomach, requires to capture local and global features. That is probably why hybrid models have more
accurate result.

Impact of Pre-training

The average performance of GC-UNet and its variants are consistently better when they are pretrained
on MedNet. Also, ECA-GC-UNet2 has slightly better performance than GC-UNet2 in average DSC. This
highlights the importance of domain-specific pre-training for medical image segmentation.

Fig. 7 Comparison of GC-UNet and its variants with the ground truth, CS-UNet, and Swin-UNet on two sample images
in Synapse dataset. The superscript 2 indicates pretraining on MedNet. The red rectangles identify the regions where Swin-
UNet/CS-UNet tend to have over/under-segmentation problems compared to the rest.

5.3.2 ACDC

Performance of GC-UNet and Its Variants

We evaluated the performance of GC-UNet and its variants on Automated Cardiac Diagnosis Challenge
dataset (ACDC), which includes 3 organs: the right ventricle (RV), the myocardium (Myo), and the left
ventricle (LV). The results are summarized in Table 3.

1. GC-UNet achieves an average DSC of 91.23% on the ACDC dataset, with performance in segmenting LV
with DSC of 96.57% and RV with DSC of 89.88%.

14



2. Hi-GC-UNet, which integrates depthwise convolution, further improves performance, achieving an average
DSC of 91.76%, with the best results for the LV with a DSC of 96.58% and RV DSC of 90.80%.

3. ECA-GC-UNet, which replaces the SE block with the ECA block, Achieved comparable performance to
Hi-GC-UNet, with an average DSC of 91.73%, with the best results for the LV with a DSC 96.86%.

These results demonstrate that both Hi-GC-UNet and ECA-GC-UNet provide incremental improvements
over the base GC-UNet model, particularly in segmenting the LV and RV.

Table 3 Comparison of GC-UNet/Hi-GC-UNet with the state-of-the-art methods on ACDC dataset in DSC. Blue denotes
the best results and red denotes the second best. The superscript 1 and 2 indicate pre-training on ImageNet and MedNet
respectively. Other models are pre-trained on ImageNet.

Algorithm DSC(%)↑ Right Ventricle Myocardium Left Ventricle

R50-UNet [6] 87.55 87.10 80.63 94.92
R50-Atten-UNet [6] 86.75 87.58 79.20 93.47
R50-ViT [6] 87.57 86.07 81.88 94.75
Swin-UNet [4] 90.00 88.55 85.62 95.83
MISSFormer [15] 90.86 89.55 88.04 94.99
TransUNet [6] 89.71 88.86 84.53 95.73
GPA-TUNet [22] 90.37 89.44 87.98 93.68
CS-UNet [19] 90.38 88.28 86.50 96.35
GC-UNet1 90.98 89.63 86.77 96.55
GC-UNet2 91.23 89.88 87.25 96.57
Hi-GC-UNet1 91.48 90.56 87.37 96.51
Hi-GC-UNet2 91.76 90.80 87.90 96.58
ECA-GC-UNet1 91.43 90.16 87.48 96.65
ECA-GC-UNet2 91.73 90.45 87.90 96.86

Comparison with State-of-the-Art Methods

We compare the performance of GC-UNet and its variants on the ACDC dataset with some state-of-the-
art methods including CNN-based methods (R50-UNet and R50-Atten-UNet), Transformer-based methods
(R50-ViT, Swin-UNet, MISSFormer), and hybrid methods (TransUNet, GPA-TUNet, and CS-UNet). The
results are shown in Table 3. GC-UNet and its variants are better than all other methods in terms of average
DSC, where Hi-GC-UNet pre-trained on MedNet has the best performance (91.76%). This represents a
significant improvement over previous approaches, with DSC scores below 90.86% for all other networks.
Compared to CS-UNet, our model achieves a 0.85% higher DSC, demonstrating the effectiveness of the
global context self-attention and local self-attention mechanisms in capturing both long and short-range
spatial dependencies.

Figure 8 includes 3 example images in the ACDC dataset for a qualitative comparison between GC-
UNet, its variants, CS-UNet and Swin-UNet. GC-UNet and its variants (pretrained on MedNet) are able to
segment right ventricle and left ventricle more accurately than CS-UNet (pretrained on ImageNet).

Impact of Pre-training

We evaluated the impact of pre-training GC-UNet on two datasets: ImageNet and MedNet. When pre-trained
on ImageNet, GC-UNet achieved an average DSC of 90.98%, Hi-GC-UNet reached 91.48%, and ECA-GC-
UNet obtained 91.43%. Pre-training on MedNet led to further improvements, with GC-UNet achieving an
average DSC of 91.23%, Hi-GC-UNet improving to 91.76%, and ECA-GC-UNet reaching 91.73%. These
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Fig. 8 Comparison of GC-UNet and its variants with the ground truth and CS-UNet on 3 example images in ACDC dataset.
The superscript 2 indicates pretraining on MedNet. The orange rectangle box identifies the regions where CS-UNet have over
or under segmentation problems compared to the rest.

results demonstrate that pre-training on MedNet, a domain-specific dataset, consistently enhances the perfor-
mance of GC-UNet and its variants, highlighting the importance of domain-specific pre-training for medical
image segmentation tasks.

5.3.3 Polyp datasets

We evaluated the performance of GC-UNet and its variants on several Polyp datasets by first training it
on 2 seen datasets (CVC-ClinicDB and Kvasir) and then use the trained models on 3 unseen datasets
(CVC-ColonDB, ETIS-LaribDB, and CVC-300) to evaluate the generalizability of the models.

Table 4 compares the performance of GC-UNet and its variants with state-of-the-art CNN-based algo-
rithms (UNet, UNet++, PraNet) and hybrid method (CS-UNet). While GC-UNet pre-trained on MedNet
has the best DSC metric for the Kvasir dataset, it is behind CS-UNet on the CVC-ClinicDB dataset though
the difference is relatively small, with DSC scores of 90.60% compared to 90.67%.

Generalizability

As shown in Table 4 (column 3–5), GC-UNet is more generalizable to unseen datasets (CVC-ColonDB,
ETIS-LaribDB, and CVC-300). Compared to other approaches, GC-UNet models have the best and second
best DSC value in CVC-ColonDB and ETIS-LaribDB datasets and the second best DSC value in CVC-300
dataset. For example, ECA-GC-UNet pre-trained on MedNet achieved a DSC of 77.84% on CVC-ColonDB
and 74.26% on ETIS-LaribDB, outperforming CS-UNet (DSC: 72.00% and 64.50%) and PraNet (DSC:
70.9% and 62.8%). The overall performance of GC-UNet is rather remarkable.
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Table 4 Comparison of GC-UNet/Hi-GC-UNet and State-Of-The-Art algorithms on Pylop datasets (the columns are
average DSC in %). Blue indicates the best result and red displays the second-best. The superscript 1 and 2 indicate
pre-training on ImageNet and MedNet respectively. Other models are pre-trained on ImageNet.

UNet[1] 82.3 81.8 71.0 51.2 39.8
UNet++ [2] 79.4 82.1 70.7 48.3 40.1
PraNet [23] 89.9 89.8 87.1 70.9 62.8
CS-UNet [19] 90.67 90.00 85.59 72.00 64.50
GC-UNet1 89.48 89.26 86.52 74.95 65.97
GC-UNet2 89.44 90.02 86.20 78.08 72.03
Hi-GC-UNet1 89.14 89.70 85.18 75.90 72.76
Hi-GC-UNet2 88.87 90.58 86.42 76.64 73.39
ECA-GC-UNet1 90.20 90.43 85.33 78.67 71.68
ECA-GC-UNet2 90.60 90.27 86.54 77.84 74.26

Fig. 9 Comparison of GC-UNet/Hi-GC-UNet with CS-UNet, PraNet, UNet, and UNet++ on 5 example images in the Polyp
datasets. The superscript 2 indicates pretraining on MedNet.

Figure 9 presents the qualitative segmentation results of various methods, including GC-UNet that
trained on MedNet and ImageNet. Five samples, one from each dataset, are selected to highlight ambiguous
boundaries and small polyps, facilitating a differentiated comparison of segmentation performance. GC-
UNet, pre-trained on MedNet, shows a significant reduction in false positives and false negatives. This
improvement is attributed to its enhanced ability to distinguish between the obscure boundaries of polyp
regions and normal regions.

Impact of Pre-training

The impact of pre-training on MedNet versus ImageNet was also evaluated. GC-UNet and its variants con-
sistently performed better when pre-trained on MedNet compared to ImageNet. For instance, GC-UNet
pre-trained on MedNet achieved a DSC of 90.02% on Kvasir, compared to 89.26% when pre-trained on
ImageNet. Similarly, ECA-GC-UNet pre-trained in MedNet achieved a DSC of 90.60% in CVC-ClinicDB,
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compared to 90.20% when pre-trained in ImageNet. This improvement further confirms the benefit of
domain-specific pre-training for medical image segmentation.

6 Computation Complexity

GC-UNet not only has good segmentation performance but also lower computation complexity than the
state-of-the-art segmentation methods. We compared the computation complexity of GC-UNet and its vari-
ants with that of Transformer-based and hybrid methods in terms of model parameter numbers, floating
point operations (FLOPs) per epoch of training, inference time, and model sizes. This assessment is evalu-
ated on the Synapse dataset. As shown in Table 5, ECA-GC-UNet has the least number of parameters at
12.12 million, while the smallest Transformer-based model, TransDeepLab, has 21.14 million parameters.
Correspondingly, ECA-GC-UNet has the smallest model size at 48.92 MB while TransDeepLab has 86.343
MB. ECA-GC-UNet also has the least number of FLOPs per epoch of training at 30.28G while the closest
Transformer-based model, Swim-UNet, has 61.64G. Similarly, ECA-GC-UNet has the least training time
per epoch and highest FPS for inference.

The low computation cost and small memory footprint of GC-UNet make it the best trade-off between
performance and model complexity. It has better or comparable performance than most of the state-of-the-
art models, which have substantially larger model size and higher computation cost. The efficient design of
GC-UNet highlights its potential for achieving better segmentation results in clinical applications.

Table 5 Comparison of GC-UNet, its variants, Transformer-based networks, and hybrid networks based on model
parameters, the floating point operations (FLOPs) per training epoch, number of epochs to train, training time
per epoch (TTPE), and inference time in Frame Per Second (FPS) for 1568 axial abdominal clinical CT images,
and model size. For FLOPs and TTPE, the batch size is 10. Training epochs is what is needed for the final result.

Algorithm # of params (M) FLOPs (G) # of epochs TTPE (m:s) FPS Model size (MB)

TransDeepLab [5] 21.14 160.00 200 1:36 20 86.343
Swin-UNet [4] 27.17 61.64 150 1:45 27 108.058

MISSFormer [15] 42.46 98.86 400 4:01 19 166.124
HiFormer [18] 25.51 80.45 400 1:27 19 101.161
CS-UNet [19] 44.96 110.00 150 2:45 26 177.613
TransUNet [6] 105.28 290.00 150 2:54 17 414.412

GC-UNet 12.34 30.41 150 1:16 30 49.75
Hi-GC-UNet 13.06 31.54 150 1:18 28 52.58

ECA-GC-UNet 12.12 30.28 150 1:16 30.5 48.92

7 Ablation Study

To investigate the impact of various factors on model performance, we conducted ablation studies using the
Synapse dataset. Below, we discuss the effects of upsampling and the optimal hyperparameters for training
our model.

7.1 Hyper-parameter Tuning

GC-UNet is trained with a combination of two loss functions, dice loss and cross-entropy loss, which aligns
with many current segmentation methods. During the training process, we improve the performance by
choosing an optimal combination of dice and cross-entropy losses and an optimal learning rate. We conducted
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experiments to identify the optimal settings for the combined losses and the learning rate. Table 6 compares
the performance of GC-UNet in terms of the Dice-Similarity Coefficient (DSC) and Hausdorff Distance (HD)
values for various hyper-parameter values. The optimal DSC and HD are achieved when (dice loss, cross-
entropy loss) = (0.3, 0.7) and learning rate is 0.0001. This configuration was used in all of our subsequent
experiments.

Table 6 Ablation study on the impact of the training hyper-parameters to the performance of GC-UNet. The hyper
parameters include the loss function (cross entropy loss and dice loss) and learning rate.

AdamW 0.6 0.4 0.00001 81.67 22.40
AdamW 0.6 0.4 0.0001 81.58 22.35
AdamW 0.7 0.3 0.00001 81.53 23.16
AdamW 0.7 0.3 0.0001 82.39 15.94

7.2 Upsampling

Similar to Swin-UNet [4], to complement the downsampling layer in the encoder, we specifically designed
an upsampling layer in the decoder to perform upsampling and feature dimension increase. To assess the
effectiveness of this upsampling layer, we evaluated GC-UNet on the Synapse dataset to compare GC-UNet
with bilinear interpolation (with or without SE (Squeeze and Excitation) block) to GC-UNet with transposed
convolution (Fused-MBConv module with or without SE block) in the upsampling layer. The results in
Table 7 indicate that GC-UNet with transposed convolution (Fused-MBConv module with SE block) in the
upsampling layer has the best performance.

Table 7 Ablation study on the impact of the upsampling types to the performance of GC-UNet.

Upsampling Type DSC (%) HD (mm)

bilinear interpolation 80.31 22.64
bilinear interpolation + SE 80.89 25.76
transposed convolution (Fused-MBConv) 81.80 21.12
transposed convolution (Fused-MBConv + SE) 82.39 15.94

8 Conclusion

We introduced GC-UNet, a U-shaped network that incorporates a lightweight vision transformer to enhance
medical image segmentation by effectively capturing both global and local features. The downsampling and
upsampling blocks between encoder and decoder components provide inductive bias and model inter-channel
dependencies effectively. GC-UNet and its variants have better or comparable performance than traditional
CNN-based, Transformer-based, and hybrid methods on various medical image datasets. At the same time,
GC-UNet has lower model complexity with less number of model parameters, lower model size, lower training
and inference time, and lower FLOPs for training. The ability of GC-UNet to model long-range spatial
dependencies and its competitive performance in segmenting complex and small anatomical structures make
it a promising tool for clinical applications. The architecture’s design, which includes GC-ViT encoders and
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decoders with skip connections, contributes to its high performance while maintaining a lower computational
complexity compared to state-of-the-art methods. The pretraining on a medical image dataset, MedNet, and
the subsequent evaluations on multiple medical imaging tasks show the model’s robustness and generalization
capabilities, positioning GC-UNet as a practical and powerful approach for medical image segmentation.

In future work, we plan to introduce the GC-UNet 3D model for voxel segmentation of medical images.
Another potential direction is to leverage the capsule network (CapsNet) [37], which has better handling of
spatial hierarchies, is more robust to transformation, and can generalize better to unseen data. CapsNet has
a high computational cost and is not suitable for large images. This was overcome with local constraints on
the routing and sharing of the transformation matrix and was shown to be effective for the segmentation
of medical images [38]. In future work, we would like to compare the performance of more efficient capsule
networks [39, 40] with CNN- and Transformer-based segmentation algorithms.
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