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Abstract
Deep Learning (DL) has found great success in well-

diversified areas such as machine vision, speech recogni-
tion, and multimedia understanding. However, the state-
of-the-art tools (e.g. Caffe, TensorFlow, and CNTK), are
programming libraries with many dependencies and im-
plemented in languages such as C++ that need to be com-
piled to a specific runtime environment and require users
to install the entire tool libraries for training or inference,
which limits the portability of DL applications.

In this work, we introduce DeepDSL, a domain spe-
cific language (DSL) embedded in Scala, that compiles
DL networks encoded with DeepDSL to efficient, com-
pact, and portable Java source programs for DL train-
ing and inference. DeepDSL represents DL networks
as abstract tensor functions, performs symbolic gradi-
ent derivations to generate Intermediate Representation
(IR), optimizes the IR expressions, and translates the op-
timized IR expressions to Java code that runs on GPU
without additional dependencies other than the necessary
GPU libraries and the related invocation interfaces: a
small set of JNI (Java Native Interface) wrappers. Our
experiments show DeepDSL outperforms existing tools
in several benchmark programs adopted from the current
mainstream Deep Neural Networks (DNNs).

1 Introduction

Multimedia has become the most valuable resource for
insights and information [9]. In recent years, a new set
of machine learning algorithms denoted as Deep Learn-
ing(DL) [29], which aims at learning multiple levels of
representation and abstraction that help infer knowledge
from multimedia data such as text, audio, image, and
video, is making astonishing gains in areas such as ma-
chine vision, speech recognition, and multimedia analy-
sis.

Deep learning leverages neural network of many lay-
ers to perform learning tasks such as classification. The

learning process is iterative where a typical iteration has
a forward inference step to make a prediction using the
training data and a backward update step to adjust each
network parameter using the gradient of the loss with
respect to the parameter, where the loss is a scalar that
measures the difference between the prediction and ac-
tual classification of the training data. Users specify the
structure of the DL network that forms the forward infer-
ence step while the gradient update step is derived from
the DL network directly or through symbolic derivation
from the gradient expressions.

Deep learning is very computationally intensive and
most solutions leverage parallel computing platforms
such as GPUs for better performance. For instance,
convolutional neural network (CNN), a popular type of
DNN, applies multiple convolution operations (among
others) to training data such as images, where the image
data are represented as 4-dimensional arrays (or tensors)
and the dimensions represent the number of images in
a training batch, the number of channels, and the height
and width of each image. Among the main challenges of
implementing DL networks are runtime and memory ef-
ficiency. The runtime efficiency is important since train-
ing a DL network requires many iterations and inefficient
solution can take days to complete. Memory efficiency
is important since operations like convolution can use a
large portion of the GPU memory where memory ineffi-
cient solutions can exhaust the GPU memory and cause
the training program to crash.

Optimization is critical to the efficiency of DL appli-
cations, which can be implemented at high level or low
level. High-level optimization includes steps such as the
simplification of computation (to eliminate redundancies
and reuse intermediate results) and computation steps re-
ordering to reduce peak memory usage. Low-level opti-
mization improves the efficiency of individual operations
such as convolution and matrix multiplication. For low-
level optimization, there are GPU libraries such as Cuda
that supports high-performance linear algebraic compu-



tation and Cudnn that supports DL-specific computation
such as convolution of image tensors. However, these
GPU libraries consist of low-level C functions with com-
plex interfaces and explicit memory management, which
are difficult to use directly and hard to debug.

The optimization of DL applications is domain spe-
cific since the meaning of the mathematical computation
is not recognized by programming language compilers.
The optimization is also complicated in that the gradient-
update step of DL training loop is indirectly derived and
it can reuse some of the intermediate results of the for-
ward inference step. The degree of reuse depends on how
fine-grained the computation abstraction is and how the
gradients are derived. The suitable level of granularity
differs at different stages of the computation. To encode
the DL networks, it is more convenient to use coarse-
grained abstractions such as DL layers that pass tensor
data between them. However, fine-grained abstractions
are more suitable for concrete definition of DL network
layers, symbolic gradient derivation, and optimization.
On the other hand, to utilize high-performance GPU li-
braries and to automate memory management, the DL
computation should be encoded using abstractions such
as tensors and matrices. In short, DL applications need to
use varying levels of domain-specific abstractions during
their computation process, which can be conveniently
supported by a domain specific language.

In recent years, researchers have developed a num-
ber of popular tools such as Torch7 [11], Theano [8],
Caffe [21], TensorFlow [1], and Computational Network
Toolkit (CNTK) [2]. These tools are programming li-
braries with fixed bindings for key data structures such
as tensors and opaque internal representation of control
flow logic. Most of the these libraries represent the DL
networks using some form of directed acyclic graphs
(DAG) or computation graphs. The gradient deriva-
tion and optimization are based on graph transformation
while runtime execution and memory management are
based on the optimized computation graph.

Computation graphs are similar to dataflow graphs that
depict the order of execution in DL programs. How-
ever, the graphs are not convenient for program opti-
mization with multiple levels of abstractions and the
heuristics-based optimization of these libraries through
graph traversal and transformation are often less than op-
timal.

Computation graphs are not designed for user-level ac-
cess, which make it difficult to define customized DL ap-
plications and to debug runtime errors. This also limits
the runtime environments of the DL applications to what
the libraries provide. Debugging errors or making low-
level changes to the existing libraries are difficult with-
out in-depth understanding of how the libraries are de-
signed and implemented. In addition, these tools have a

number of software dependencies and require platform
dependent installation. Most of these tools directly or in-
directly depend on languages such as C++ that need to be
compiled to specific platforms, which limits the portabil-
ity of DL applications using these tools.

To address these limitations, we developed DeepDSL1

a domain specific language 2 embedded in Scala, for
composing DL networks. DeepDSL differs from other
DL tools in several aspects:

1. DeepDSL represents DL network as expressions
where tensor functions define DL layers, func-
tion compositions define DL networks, and indexed
scalars define tensor expressions. Gradient deriva-
tion and optimization are based on term-rewriting
rules that transform DSL expressions from one form
to another. The optimized expressions are then
scheduled to reduce peak memory usage before tar-
get code is generated. Before code generation, the
DSL expressions are fully abstract, with distinct
stages of symbolic evaluation, optimization, and
memory management. The scalar, tensor, and ten-
sor function expressions are the abstractions of the
mathematical computations of a DL network and
they do not have concrete bindings to actual compu-
tations before target code is generated. Language-
based representation is more flexible for optimiza-
tion than the computation graphs, where parts of the
graphs are tied to concrete data structures such as
tensors and the graphs are executed by invocation
of low-level code of a specific language such as C.

2. DeepDSL can statically detect errors such as in-
correct network composition (as typing error) and
report memory consumption at each computation
step, Users can adjust the memory allocation strat-
egy before execution.

3. DeepDSL program is compiled to Java source code.
Unlike other DL tools, compiled source program
does not need to repeat the phase of gradient deriva-
tion and optimization. The runtime of initialization
is not significant compared to the training time but
it can be important when adjusting the parameters
of a DL network on small datasets.

4. The target code of DeepDSL is high-level source
code that is human readable, customizable, and easy
for debugging. The target code is more portable
since it can run on any platforms with Java Virtual
Machine (JVM) and GPU runtime library available.

1This paper extends our conference publication [52] by includ-
ing the formalization of the DSL, implementation details of gradient
derivation and optimization, enhanced performance evaluation, and de-
tailed discussion on related works.

2https://github.com/deepdsl/deepdsl

https://github.com/deepdsl/deepdsl


Other DL tools often have far more dependencies
and are specific to language versions and operating
systems.

For the rest of the paper, Section 2 is an informal
overview of DeepDSL using a simple DL network. In
Section 3, we define the formal syntax, type system, and
operational semantics of DeepDSL. We explain gradi-
ent derivation of DeepDSL in Section 4, optimization
through symbolic reduction in Section 5, optimization
through inlining and in-place computation in Section 6,
and code scheduling in Section 7. Target code genera-
tion and runtime memory management are explained in
Section 8. The performance of DeepDSL is evaluated
in Section 9, which is followed by related work in Sec-
tion 10. We conclude in Section 11.

2 Overview

A high-level overview of DeepDSL is shown in Figure 1,
where a DSL program is transformed through the stages
of symbolic gradient, optimization, and code generation
into a Java source program. The generated Java program
is human readable and runs on Nvidia GPU through a
Java API that calls Cuda/Cudnn library through a JNI
library JCuda.

Figure 1: DeepDSL architecture, where the compiler and
runtime are completely separate.

The core concepts of DeepDSL are abstract tensor and
scalar expressions and tensor functions that transform
tensors to tensors and tensors to scalars. DeepDSL di-
rectly encodes the mathematical representation of DL
networks, where each layer is represented as a tensor
function. The entire network is then represented as a
composition of these functions. The training loss of a
DL network is represented as a scalar expression. The
gradients of the loss expression against network param-
eters are derived symbolically so that they are also DSL

expressions. The gradient and the loss expressions go
through several stages of simplification, optimization,
transformation to become expressions of intermediate
representation (IR), which remain abstract and human
readable. A final stage of code generation transforms the
IR expressions to a Java program for DL network train-
ing and inference.

Also, since DeepDSL programs consist of DSL ex-
pressions that represent abstract mathematical computa-
tions, they can be statically analyzed by the DSL com-
piler to infer the dimensions of tensors in each layer, to
check whether the layers are properly connected, and to
automatically insert tensor reshaping operations as nec-
essary. Errors caused by incorrect parameter dimensions
are caught before code generation.

DeepDSL analyzes the dependencies of the DSL ex-
pressions during optimization stage to determine when
each DSL expression is ready to run. For example, the
gradients of the weight and bias of convolution layer
can start as soon as the backward gradient of the pre-
vious layer is known and before the backward gradients
of other layers can be computed. Such information is
obtained by analyzing the variable dependency of the IR
expressions. There is no dedicated data structure such
as a graph for representing the relations between layers.
DeepDSL also reorders the execution of IR expressions
so that tensor objects are allocated as late as possible but
deallocated as early as possible to reduce the peak mem-
ory consumption.

DeepDSL is embedded in Scala and its syntax is de-
fined using Scala classes and methods as syntactic sugar.
After evaluation, DeepDSL programs are de-sugared to
a form of abstract syntax tree (AST). In this section, we
use examples to illustrate how a DL network such as
Lenet is defined using DeepDSL.

2.1 Lenet

Figure 2 shows the network structure of a variant of the
classic LeNet-5[30]. This network has 2 convolution and
subsampling/pooling layer alternatively arranged for 2
times, followed by a fully-connected layer, a ReLU ac-
tivation layer, another fully-connected layer. A softmax
layer is attached to the very end to produce a normalized
K-dimensional vector of real values in the range [0,1]
that add up to 1.

LeNet DNN was originally designed to recognize vi-
sual patterns directly from pixel images with extreme
variability, such as handwritten characters, as well as ro-
bustness to distortions and simple geometric transforma-
tions3. Due to its simplicity and latent feature capturing
power, Its variations have been applied to domains such

3http://yann.lecun.com/exdb/lenet/



Figure 2: A version of the LeNet-5 network structure [30]

as facial recognition, scene labeling, and image classifi-
cation, etc.

The parameters of convolution layer consist of learn-
able kernels or filters. Each unit of this layer receives in-
puts from a set of units located in small neighboring area
in the previous layer, the neighboring area is called the
receptive field. During the forward pass each filter is con-
volved with input to produce a feature map. The weight
vector that generates the feature map is shared to reduce
the number of learned parameters. As the name feature
map implies, the convolution computation between each
filter and each receptive field captures the local feature
in that particular area of the input. When all the convo-
lution computations are finished, features and their loca-
tions across the complete visual input are captured and
recorded.

The pooling layer takes small rectangular block ar-
eas from the output of the convolution layer and com-
pute subsample values (maximum or average value of all
the unit values in the block, etc.). This computation step
greatly reduces the spatial size of the representation, thus
reducing the parameters to be computed. CNN differs
from the traditional multilayer perceptrons (MLP) in the
sense that it provides certain level shift and distortion in-
variance [28]. Such property is mainly achieved with the
pooling layer. Since even when images are shifted or dis-
torted a bit, the subsample values taken by the pooling
layer can still largely remain unchanged and thus pre-
serve the commonalities between input data samples.

The second convolution layer captures features from
the output of the previous pooling layer. These features
are from feature space that is different from the feature
space of the input layer. Then the second pooling layer
continues to reduce the dimensionality of the input from
the second convolution layer. Due to its powerful capa-
bility of discovering features in different dimensionality
space, such repeated stack-up pattern have been widely
used in many different CNNs.

While locality information is important for the visual

input, the global information or the latent relation be-
tween different local blocks is also very important. This
information is captured by the fully connected layer. The
fully connected layer connects all neurons from the pre-
vious layer to each neuron of it to compute the global
semantic information.

Finally, depending on the output needs, an activation
function (e.g. ReLU) may be applied to the fully con-
nected layer. This function is used to generate a bound-
ary (linear or nonlinear) between the input samples.

2.2 Tensor

The core concept in DeepDSL is tensor, which is repre-
sented by a Scala type Vec. A Vec object has an array
of dimensions of the type Dim. Each dimension object
is either a dimension variable DimVar or a dimension ex-
pression. For example, a 4-D tensor x of the type VecDec

can be declared using a call T._new(N, C, X, Y), where
N, C, X, Y are the dimensions of batch, channel, width,
and height of an image. If T._new(F, C, K1, K2) is a
convolution kernel k, then the convolution of x and k with
stride 1 and padding 0 will result in a tensor of the dimen-
sion F, C, X-K1+1, Y-K2+1, where X-K1+1 and Y-K2+1

are dimension expressions.
The code snippet in Listing 1 defines 2-D tensor w and

x and the sum of their product over the abstract index
k of dimension M1, where x(i,k) and w(j,k) represent
tensor elements of x at index i, k and w at index j, k

respectively.

1 val x = T._new(N, M1)
2 val w = T._new(M2, M1)
3

4 T.sum(M1 , k => x(i, k) * w(j, k))

Listing 1: Sum of tensor expression

The call T.sum(M1, k => e) returns the sum of the
scalar e over the index k of dimension M1. Note that this
expression does not compute a value but is an abstraction



that can be translated to code that does the computation
in the code generation stage.

Using this, we can define a fully connected layer (an
affine transformation) with weight k and bias b in List 2.

1 T.vec(N, M2 , (i, j) =>
2 T.sum(M1 , k => x(i, k) * w(j, k)) + b(j)
3 )

Listing 2: Fully connected layer

The call T.vec(N, M2, (i, j) => e) returns a tensor
expression defined by the scalar e over the index i and
j of dimension N and M2 respectively.

2.3 Tensor Function
In order to compose the fully connected layer with
other layers, we can use the tensor function in List-
ing 3 to represent the layer, where expression of the form
VecFun(x, v) represents a function that takes input ten-
sor x and returns a tensor represented by v.

1 VecFun(x,
2 T.vec(N, M2 ,
3 (i, j) => T.sum(M1, k => x(i, k) * w(j, k)) + b(j)
4 )
5 )

Listing 3: Tensor function for fully-connected layer

Putting everything together, the Scala method in List-
ing 4 takes weight and bias tensor as parameters and re-
turn a tensor function that represents a fully connected
layer, where w.dim(0) returns the first dimension of the
tensor w and T.dim creates a new dimension variable.

1 // x: N x M1 w: M2 x M1 b: M2
2 def full(w: VecDec , b: VecDec) = {
3 val N = T.dim; val M2 = w.dim (0); val M1 = w.dim (1)
4 val x = T._new(N, M1)
5

6 VecFun(x,
7 T.vec(N, M2 ,
8 (i, j) => T.sum(M1, k => x(i, k) * w(j, k)) + b(j)
9 )

10 )
11 }

Listing 4: Method that returns a fully-connected layer

If we represent the type of a tensor using its dimension
list, then the tensor function returned by the method full

has the type of List(N, M1) -> List(N, M2). Note that
for this type, the only dimension variable that must have
concrete binding is M2, while N and M1 can remain abstract
since we can find concrete binding for them when con-
necting this layer with its previous layers in a network.

2.4 Fixed Tensor
Common layers in DL networks such as convolu-
tion and activation have sophisticated implementation
in dedicated libraries such as Cudnn. To represent
this kind of implementation, DeepDSL uses fixed ten-
sors of the type FixVec. An expression of the form

FixVec(layer, param, dim) represents a fixed imple-
mentation for some layer type that takes a parameter list
param and returns tensor of dimensions dim.

For example, using this construct, we can define a
Scala method relu in Listing 5 that returns a ReLU ac-
tivation layer as a tensor function, where the parameter
n of the method specifies the number of dimensions of
the input x and T._new(n) creates a tensor variable of
dimension n.

1 def relu(n: Int) = {
2 val x = T._new(n)
3 VecFun(x, FixVec(ReLU(), List(x), x.dim))
4 }

Listing 5: Function for ReLU

The reason that we define the fully connected layer
differently from the ReLU layer is that the former will
be translated to calls to more fine-grained Cuda opera-
tions such as matrix product and sum while the latter will
be translated to a cross-grained Cudnn call for activation
layer. Despite the difference, the two forms of tensor ex-
pressions are treated uniformly by DeepDSL during the
process of gradient derivation and optimization. They
only differ during code generation stage.

Of course, like how we encode the fully connected
layer, we can also have direct encoding of ReLU such
that the generated Java code will call the more basic Cuda
functions instead of direct Cudnn functions.

2.5 Function Application and Composition
Just like the tensors and tensor functions, the function
applications are also abstract as shown in Listing 6.

1 val x = T._new (2)
2

3 val M1 = T.dim
4 val M2 = T.dim (10) // dimension of size 10
5

6 // w is named "W" and initialized as Gaussian variable
7 val w = T._new(Param.gaussian , "W", M2, M1)
8 // b is named "B" and initialized as constant 0
9 val b = T._new(Param.const (0), "B", M2)

10

11 val f = full(w, b)
12 val activate = relu (2)
13

14 activate(f(x))

Listing 6: Function application

In the example above, the function call f(x) does not
directly compute a value since the tensor function f is
abstract and so is x. Instead, f(x) reduces to a DSL
expression of the type VecApp, which is a subtype of
Vec. This is expected since the application of a tensor
function to a tensor argument should result in a tensor
as well. An expression of the form VecApp(fun, arg)

represents the application of the tensor function fun

to the tensor argument arg. For example, f(x) re-
duces to VecApp(f, x) and activate(f(x)) reduces to
VecApp(activate, VecApp(f, x)).



Now we can define a tensor function that represents
the composition of activate and f as:

1 val x = T._new (2)
2 VecFun(x, activate(f(x)))

Since functions represent layers and function composi-
tions represent DL networks, DeepDSL includes an op-
erator o to simplify function composition so that the com-
position of activate with f can be written as:

1 activate o f

2.6 Network as Function Composition
Using some helper functions, we can define the Lenet
network as in Listing 7.

1 val cv1 = CudaLayer.convolv("cv1", 5, 20)
2 val cv2 = CudaLayer.convolv("cv2", 5, 50)
3 val mp = CudaLayer.max_pool (2)
4 val relu = CudaLayer.relu (2)
5 val f = Layer.full("fc1", 500)
6 val f2 = Layer.full("fc2", 10)
7 val flat = Layer.flatten(4, 1)
8

9 val network = f2 o relu o f o flat o
10 mp o cv2 o mp o cv1

Listing 7: Network definition of Lenet

In this example, CudaLayer.convolv("cv1", 5, 20)

returns a tensor function representing convolution layer
with 5 by 5 kernel and output channel size 20, with
default stride 1 and padding 0. The name cv1

are used to distinguish the weight and bias parame-
ters of the convolution layer since these parameters
need to be distinct from other parameters in the net-
work. CudaLayer.max_pool(2) returns a max pool-
ing layer that down-samples its input by a factor of 2.
Layer.full("fc1", 500) returns a fully connected layer
with output size 500. Layer.flatten(4, 1) returns a
tensor function that flattens a 4-D tensor into a 2-D ten-
sor by collapsing the 2nd, 3rd, and 4th dimension of the
input tensor into the 2nd dimension of the output tensor
(Note here 4 is the number of dimensions and 1 is the in-
dex where the collapsing starts). The last line defines the
Lenet network as function composition, where o is left
associative. For example, f2 o relu o f should read as
(f2 o relu) o f.

List(N,C,N1,N2)->List(N,10) is network’s type,
where the input is a 4-D tensor, output is a 2-D tensor,
N, C, N1, N2 are dimension variables, and the fixed dimen-
sion, 10, is the number of classes of the training data.

2.7 Training
The loss expression c of Lenet (line 16 in Listing 8)
can be defined as the application of a tensor func-
tion loss o softmax o network to the input x.asCuda,
where x represents training images, x.asCuda represents

copying x to GPU memory, and loss is a tensor to scalar
function that represents the loss of softmax o network

applying to x.asCuda.

1 // batch size , channel , width , and height
2 val N = 500; val C = 1; val N1 = 28; val N2 = 28
3 val dim = List(N,C,N1,N2)
4

5 val y = T._new("Y", List(N)) // image class labels
6 val x = T._new("X", dim) // training images
7

8 val y1 = y.asIndicator (10). asCuda
9 val x1 = x.asCuda // load to GPU memory

10

11 val softmax = CudaLayer.log_softmax
12 val loss = Layer.loss(y1)
13

14 val p = network(x1) // p is the prediction
15 // c is loss of training
16 val c = (loss o softmax o network) (x1)

Listing 8: Loss expression of Lenet

The variable y represents class labels of the training data,
which are one-hot encoded as indicator vectors using the
call y.asIndicator(10), where 10 refers to the number
of classes. The variable p represents the forward infer-
ence of the input x.

With forward inference expression and the loss expres-
sion, the code to generate Java source code can be de-
fined in Listing 9.

1 val param = c.freeParam
2

3 // name , train/test iterations , learn rate , momentum
4 // weight decay , gradient clipping bound (0 means none)
5 val solver =
6 Train("lenet", 100, 10, 0.01f, 0.9f, 0.0005f, 0)
7

8 val mnist = Mnist(dim) // training dataSet
9 val loop = Loop(c, p, mnist , (x, y), param , solver)

10

11 // generate training and testing file
12 CudaCompile("path"). print(loop)

Listing 9: Compilation of Lenet

We first extract the network parameters using the call
c.freeParam. The variable solver is simply a collection
of parameters that include output file name, train itera-
tion, test iteration, learning rate, momentum, weight de-
cay, gradient clipping bound (0 means no clipping). The
variable mnist refers to the Mnist dataset. Finally, we
put everything together in the variable loop and pass it to
CudaCompile to generate the Java source code for train-
ing and testing, where the path string indicates in which
the Java source code should be generated.

Note that gradient derivation and optimization occur
inside the class Loop where it takes the gradients of the
loss expression c against the parameters param, optimizes
the gradients, and transforms them to IR expressions.
The code generator CudaCompile("path").print(loop)
performs a single-pass translation of the IR expressions
to Java source code.



3 Formalization

In this section, we present a formal definition of
DeepDSL that includes an abstract syntax, an operational
semantics, a type system, and examples of their applica-
tion to some important CNN building blocks.

3.1 Syntax
An abstract syntax for DeepDSL is shown in Figure 3,
which defines two types of expressions: tensors (denoted
by t) and scalars (denoted by s). A tensor is either a vari-
able, a function application, a tensor expression, a tensor
addition, a scalar-tensor product, or a cast. A scalar is ei-
ther a constant, a function application, a tensor element,
the sum of a tensor, or an arithmetic expression such as
exponentiation and logarithm.

Dimension The symbol d represents a dimension and
D represents a list of dimensions, which can be written
as d1 · · ·dk. A dimension can be a constant, a dimension
variable dx, a dimension expression d/n, d−dx, d+n, or
a dimension product d1

x ×· · ·×dk
x . Dimension variables

are used for defining functions polymorphic in dimen-
sions such as the fully-connected layer in Section 2.3.
Dimension expressions are used for defining the dimen-
sions of operations such as convolution and pooling. For
example, the dimension of a 1-D convolution between
a vector of dimension d1 and a kernel of dimension d2
with stride 1 and padding 0 is d1− d2 + 1. Dimension
products are used for defining the flattened dimension of
a tensor. For example, if we flatten the last 3 axis of a
4-D tensor of dimensions d1 · d2 · d3 · d4, the dimension
becomes d1 · (d2×d2×d4).

Types The type of a tensor is its dimension D while
the type of a scalar is ?, which represents a real number
type. For example, a DL network can represent its input
images as a 4-D tensor with the type dn ·dc ·dh ·dw, where
dn, dc, dh, dw are the dimensions of the images’ batch
size, channel, height, and width respectively.

Function A function has the form of x⇒ e, where x is
a tensor variable and the e is either a tensor or a scalar.
The builtin functions (denoted by F ) always return ten-
sors and they represent fixed DL layers in libraries.

Note that DeepDSL supports functions of the form
(x1, . . .xk)⇒ e that takes multiple parameters. We only
consider single-parameter function here for simplicity.

Variable Each tensor variable x has an implicitly la-
beled type D. We assume an auxiliary function T (x)
that returns the type of variable x. We overload it so that
T (F ) returns that type of builtin function F .

Index The symbol i represents an index and I repre-
sents a list of indices, which can be written as i1 · · · ik.
An index can be an index variable ix or an index expres-
sion i× n, i + i′, i + n. Each index variable ix has an
implicitly labeled dimension d and the value of ix ranges
from 0 to d−1. We assume an auxiliary function D(ix)
that returns the dimension of ix.

Tensor expression and tensor element The tensor ex-
pression I⇒ s defines a tensor that has the scalar value of
s over the domain of the index list I and the dimensions
of this tensor is the dimensions of I. The tensor element
x(I) is the element of a tensor variable x at index list I.

Sum The expression ∑I(s) represents the summation
of s over the index list I. If I = i1 · · · ik, then ∑I(s) is
equivalent to ∑i1 ∑i2 · · ·∑ik(s).

Example The index expressions are used in tensor ex-
pressions such as convolution. For example, the 1-D con-
volution of a vector x and a kernel w (stride 1 and padding
0) can be written as

i⇒∑
i′

x(i+ i′)×w(i′)

where T (x) = d1, T (w) =D(i′) = d2, D(i) = d1−d2+
1.

3.2 Semantics
An operational semantics for tensors and scalars is
shown in Figure 4. In this semantics, each tensor expres-
sion evaluates to a tensor value V , which is a flat array
of scalar values and a list of dimension values n1 · · · nk.
The size of the array must be equal to the products of the
dimensions.

V ::= (v0, . . . ,vm)
n1···nk Tensor value

where m = (n1× . . .× nk)− 1. The function D also re-
turns the dimensions of the tensor values.

D((v0, . . . ,vm)
n1···nk) = n1 · · ·nk

A function x⇒ e is polymorphic in dimensions if the
dimensions D of x contain variables. When the function
is applied to an argument V , we not only substitute x in
e with V but also substitute the dimension variables of D
in e with the matching dimensions of V by applying the
substitution U (D,D(V )) to e[V /x].

U (d,d) = /0
U (d ·D,d′ ·D′) = U (d,d′)∪U (D,D′)
U (dx,d) = {dx 7→ d}



e ::= t tensor
| s scalar

t ::= x,y,z,w variables
| (x⇒ t)(t) application
| F (t) builtin fun. app.
| (i1x · · · ikx)⇒ s tensor expression
| t1 + t2 tensor addtion
| s · t scalar tensor prod.
| (D) x cast

s ::= v constant
| (x⇒ s)(t) application
| x(I) tensor element
| ∑i1x ···ikx(s) sum
| log(s) | exp(s) | sn arith. exp.
| s1 + s2 | s1× s2 arith. exp.

f ::= x⇒ e function
| F builtin tensor fun.

F ::= convolution
| pooling
| activation | . . .

I ::= i | i · I index list
i ::= i×n | i+ i′ | i−n index exp.

| ix index var.
D ::= d | d ·D dimension list
d ::= n | d/n | d−d′ | d +n dimension exp.

| d1
x ×· · ·×dk

x dimension prod.
| dx dimension var.

τ ::= ? | D types

Figure 3: A formal syntax for DeepDSL, where n is some
positive integer and f2 ◦ f1 is defined as x⇒ f2( f1(x))

Two tensors with the same dimensions can be added
element-wise. A scalar-tensor product s× t multiples s
with each element of t. We assume that the application
of builtin function F to a tensor value V will return a
tensor value V ′ so that the types of V and V ′ match the
the parameter and return type of F .

A tensor expression (i1 · · · ik)⇒ s evaluates to a tensor
with the dimensions n1 · · · nk, where n1 · · · nk are values
of D(i1) · · ·D(ik). Note that for a dimension to evalu-
ate to a value, the dimension must not contain variables.
The jth element of the tensor is the value of s when i1 =
m1, . . . , ik =mk and j =(. . .(m1×n2+m2) . . .)×nk+mk.
For example, consider the tensor (i1 · i2 · i3)⇒ s, where
the dimensions of i1, i2, and i3 are 4, 5, and 6 respec-
tively. The tensor element when i1 = 1, i2 = 2, and i3 = 3
is the 46th element of the flat array that stores the tensor
since ((1∗5)+2)×6+3 = 45.

A cast expression (n′1 · · ·n′l) (v0, . . . ,vm)
n1···nk changes

the dimensions of the tensor value (v0, . . . ,vm)
n1···nk from

n1 · · ·nk to n′1 · · · n′l if they have the same flattened size.
For example, in LeNet-5, the 4-D tensor after the second
pooling layer needs to be flattened to a 2-D tensor be-
fore it can be passed to the fully connected layer. This
is a cast of (n′1 · n′2) (v0, . . .vm)

n1·n2·n3·n4 . When com-
puting backward gradient, such cast changes to (n1 · n2 ·
n3 · n4) (v0, . . .vm)

n′1·n
′
2 . In both cases, n′1 = n1 and n′2 =

n2×n3×n4. In general, cast requires n′1×n′2× . . .×n′l =
n1×n2× . . .×nk regardless in which index axis flatten-
ing or unflattening occurs.

A tensor element expression V (m1 · · ·mk) evaluates
to either jth element of V , where j = (. . .(m1 × n2 +
m2) . . .)× nk + mk or 0 if one of the indices is out of
bound. A sum expression ∑I(s) evaluates to the sum of
the tensor value evaluated from I⇒ s. Reduction of other
types of scalar expressions is omitted.

3.3 Typing Rules
Type judgment has the form of Γ ` e : τ , where Γ maps
tensor variables to their types and it also maps index vari-
ables to their dimensions. The typing rules for tensor
and scalar expressions are shown in Figure 6, where the
rules for arithmetic scalar expressions such as log(s) and
exp(s) are omitted.

The type of a function x⇒ e is τ1 → τ2 where τ1 is
the labeled type of x, which we retrieve through τ(x) and
τ2 is the type of e. The type of a function call f (t) is
the return type τ2 of f after applying the substitution
U (τ1,τ

′
1), where τ1 is the parameter type of f and τ ′1

is the type of t. That is, we instantiate the dimension
parameters of f with the concrete dimensions of t. The
type of the tensor expression (i1 · · · ik)⇒ s is the dimen-
sions of i1 · · · ik. These indices must be index variables
with labeled dimensions. The type of a cast expression
(D) x is D and also the flattened dimensions of Γ(x) and
D must match. For example, we can cast a variable of
type d1 ·d2 ·d3 ·d4 to d1 · (d2×d3×d4). The flatten func-
tion flat is defined as follows.

flat(d ·D) = flat(d) ·flat(D)
flat(d×d′) = flat(d) ·flat(d′)
flat(d) = d

The type of a tensor element x(I) is always ? and the
type of x must be the same as the type of I, which is
defined by the rules in Figure 5.

The type of an index list I is the list of types of each
index in I. The type of an index variable must be added
to the environment by either a tensor expression or a sum
expression. Index expressions of the form of i×n, i1+ i2,
i− n are used in describing the indices of convolution
operation.

For example, an 1-D convolution between a vector x
and a kernel w with stride n1 and padding n2 is defined



σ = U (T (x),D(V ))

(x⇒ e)(V )→ σ(e[V /x])

t1→ t ′1
t1 + t2→ t ′1 + t2

t2→ t ′2
V + t2→ V + t ′2

V = (v0 + v′0, . . . ,vm + v′m)
n1···nk

(v0, . . . ,vm)
n1···nk +(v′0, . . . ,v

′
m)

n1···nk → V

s→ s′

s · t→ s′ · t
t→ t ′

v · t→ v · t ′

v · (v0, . . . ,vm)
n1···nk → (v× v0, . . . ,v× vm)

n1···nk

D(i1)→ n1 . . .D(ik)→ nk
m1 ∈ {0 . . .n1−1} . . .mk ∈ {0 . . .nk−1}

s[m1/i1, . . . ,mk/ik]→∗ v(...(m1×n2+m2)...)×nk+mk

(i1 · · · ik)⇒ s→ (v0, . . . ,vm)
n1···nk

D(F ) = D(V )→D(V ′)

F (V )→ V ′

n′1× . . .×n′l = n1× . . .×nk

(n′1 · · ·n′l) (v0, . . . ,vm)
n1···nk → (v0, . . . ,vm)

n′1···n
′
l

i1→ m1, . . . , ik→ mk

V (i1 · · · ik)→ V (m1 · · ·mk)

V = (v0, . . . ,vm)
n1···nk 0≤ m1 ≤ n1 . . .0≤ mk ≤ nk

V (m1 · · ·mk)→ v(...(m1×n2+m2)...)×nk+mk

V = (v0, . . . ,vm)
n1···nk ∃ j. m j < 0 ∨m j > n j

V (m1 · · ·mk)→ 0

I⇒ s→ (v0, . . . ,vm)
n1···nk

∑I(s)→ v0 + . . .+ vm

Figure 4: Operational Semantics

as (i1)⇒∑i2 x(i1×n1 + i2−n2)×w(i2), where D(i1) =
(T (x)+2n2−D(i2))/n1 +1.

The type of the index expression i1× n1 + i2− n2 is
derived as follows based on the rules in Figure 5.

Γ(i1) = D(i1), where
D(i1) = (T (x)+2n2−D(i2))/n1 +1
Γ ` i1 : (T (x)+2n2−D(i2))/n1 +1
Γ ` i1×n1 : T (x)+2n2−D(i2)+1

Γ ` i2 : D(i2)
Γ ` i1×n1 + i2 : T (x)+2n2

Γ ` i1×n1 + i2−n2 : T (x)

The type of the index expression is based on the type

Γ(ix) = d
Γ ` ix : d

Γ ` i : d Γ ` I : D
Γ ` i · I : d ·D

Γ ` i : (d−1)/n+1
Γ ` i×n : d

Γ ` i1 : d1−d2 +1 Γ ` i2 : d2

Γ ` i1 + i2 : d1

Γ ` i : d +2n
Γ ` i−n : d

Figure 5: Typing rule for index expressions

derivation of (i1)⇒ ∑i2 x(i1×n1 + i2−n2)×w(i2).

Γ ` i1×n1 + i2−n2 : T (x)
Γ ` x : T (x) Γ ` i2 : D(i2) Γ ` w : D(i2)

where Γ = Γ′, i1 : D(i1), i2 : D(i2)
Γ′, i1 : D(i1) ` ∑i2 x(i1×n1 + i2−n2)×w(i2) : ?

Γ′ ` (i1)⇒ ∑i2 x(i1×n1 + i2−n2)×w(i2) : D(i1)

Theorem 1 If /0` t : τ , then there exists V such that t→∗
V . If /0 ` s : τ , then there exists v such that s→∗ v.

3.4 Examples
Affine transformation A fully-connected layer in
DNN is an affine transformation of a 2-D tensor x that
multiplies it with a 2-D filter w and adds an 1-D bias b.

f1
∆
= x⇒ (i1 · i3)⇒∑

i2

x(i1 · i2)×w(i2 · i3)+b(i1)

where D(ik) = dk for k ∈ {1,2,3}. The expression x(i1 ·
i2) evaluates to an element of x at index i1 at axis 1 and
i2 at axis 2. The type of f1 is

/0 ` f1 : d1 ·d2→ d1 ·d3

where T (x) = d1 ·d2, T (w) = d2 ·d3, and T (b) = d1.

Flattening A flattening function turns a 4-D tensor into
a 2-D tensor by collapsing the last 3 dimensions into 1.
This is a common operation of DNNs that transforms in-
puts for a fully-connected layer, which applies to 2-D
tensors. The function f2 below uses a cast to turn a 4-D
tensor x into a 2-D tensor.

f2
∆
= x⇒ (d1 · (d2×d3×d4)) x

where T (x) = d1 ·d2 ·d3 ·d4.
Here x is a 4-D tensor and it is cast to a 2-D tensor type

where the type of x is d1 ·d2 ·d3 ·d4, which is the same as
flat(d1 · (d2×d3×d4)).

/0 ` f2 : d1 ·d2 ·d3 ·d4→ d1 · (d2×d3×d4)



Γ ` v : ? T-Constant

Γ ` x : Γ(x) T-Var

Γ `F : T (F ) T-Builtin

Γ, x : T (x) ` e : τ

Γ ` x⇒ e : T (x)→ τ
T-Fun

Γ ` f : τ1→ τ2
Γ ` t : τ ′1 σ = U (τ1,τ

′
1)

Γ ` f (t) : σ(τ2)
T-App

Γ, i1 : D(i1), . . . , ik : D(ik) ` s : ?
Γ ` (i1 · · · ik)⇒ s : D(i1) · · ·D(ik)

T-TensorExp

Γ ` t1 : τ Γ ` t2 : τ

Γ ` t1 + t2 : τ
T-TenorPlus

Γ ` s : ? Γ ` t : τ

Γ ` s · t : τ
T-TensorScale

flat(Γ(x)) = flat(D)

Γ ` (D) x : D
T-Cast

Γ, i1 : D(i1), . . . , ik : D(ik) ` s : ?
Γ ` ∑i1···ik(s) : ?

T-Sum

Γ(x) = D Γ ` I : D
Γ ` x(I) : ?

T-Element

Figure 6: Typing rules for tensor and scalar expressions

Convolution The most common operations in DNN
are convolutions. For image classification, a convolution
layer applies 2-D convolution to input images x (or fea-
ture maps) with a kernel w and adds a bias b. The input to
the convolution layer is a 4-D tensor where the 1st axis
is the number of images, the 2nd axis is the number of
input channels, and the 3rd and 4th axes are height and
width of images. The kernel is also a 4-D tensor, where
the 1st and 2nd axes are the number of output and in-
put channels while the last two axes are kernel width and
height.

The equation below defines a convolution function f3
with stride 1 and padding 0.

f3
∆
= x⇒ (in · ik · ih · iw)⇒ ∑ic ∑iu ∑iv

x(in · ic · (ih + iu) · (iw + iv))×w(ik · ic · iu · iv)+b(ik)

where D(in) = dn, D(ic) = dc, D(iu) = du, D(iv) = dv,
D(ik) = dk, D(ih) = dr−du +1, D(iw) = ds−dv +1.

Note that the dimension of ih is dr− du + 1 since the
dimension of iu is du and the dimension of ih + iu must
be the same as that of the 3rd axis of x, which is dr.

There are efficient implementation of convolution in
libraries and we can treat it as a builtin function. The

type of f3 is

/0 ` f3 : dn ·dc ·dr ·ds→ dn ·dk ·(dr−du+1) ·(ds−dv+1)

where T (x) = dn ·dc ·dr ·ds, T (w) = dk ·dc ·du ·dv, and
T (b) = dk.

Loss In supervised learning, loss functions like f4 be-
low are used to compute scalar values that measure the
average error of predicted classification,

f4
∆
= x⇒∑

in
∑
ik

y(in · ik)× x(in · ik)× (− 1
dn

)

where x is the log probability of the prediction and y is
the ground truth, and T (x) = dn · dk. Note that y is a
dn×dk matrix, where inth row is an indicator vector that
represents the true class of the inth image. The variable x
is also a dn×dk matrix and the ikth value of its inth row
is the log probability of the image in being in class ik.

The type of f4 is

/0 ` f4 : dn ·dk→ ?

Log softmax A softmax function like f5 below is used
to normalize the results of the previous layers.

f5
∆
= x⇒ x− (in · ik)⇒ log(∑

il

exp(x(in · il)))

where T (x) = dn · dk, D(in) = dn, D(ik) = D(il) = dk.
The type of f5 is

/0 ` f5 : dn ·dk→ dn ·dk

Note that there are efficient implementation of softmax
in libraries so that we can treat it as a builtin function.

4 Gradient derivation

The forward inference of a DNN computes a loss ex-
pression s that measures the error of the predicted clas-
sification of training data. To train a DNN, we update

each network parameter w with a function of
∂ s
∂w

, which
is the gradient of the loss expression against w. How-
ever, these gradients should not be directly computed and
they should be simplified into computable forms through
symbolic derivation.

The gradient of a scalar with respect to a tensor vari-

able
∂ s
∂x

is a tensor with the same type as x. The gradient

of a tensor with respect to a tensor variable
∂ t
∂x

is defined



by tensors of the form t ′ · ∂ t
∂x

with the typing rule:

Γ ` t ′ : D Γ ` t : D Γ ` x : D′

Γ ` t ′ · ∂ t
∂x

: D′

If we view DNN layers as functions and the loss ex-
pression as the application of the functions on the train-
ing data, then the gradient derivation follows Rule 1.

∂ f (t)
∂y

= f ′(t) · ∂ t
∂y

+
∂ f
∂y

(t) (1)

where f (t) is the application of function f to tensor t,
∂ f (t)

∂y
is the derivative of f (t) with respect to y,

∂ t
∂y

is

the derivative of t with respect to y, f ′ is the derivative of

f with respect to its parameter, and
∂ f
∂y

is the derivative

of f with respect to y.

Note that we write f ′ instead of
∂ f
∂x

when f has a sin-
gle parameter x. If f has multiple parameters such as x1

and x2, we write
∂ f
∂x1

and
∂ f
∂x2

instead.

In general, y may appear in both f and t. However,
in case where y only appears in either f or t, either f ′(t)

or
∂ t
∂y

is zero, which means that
∂ f (t)

∂y
equals to either

f ′(t) · ∂ t
∂y

or
∂ f
∂y

(t). Note that f ′(t) is a tensor if f returns

a scalar and it is a tensor gradient if f returns a tensor.

Application of Rule 1 The following is the gradient
derivation of a scalar s = f4( f3( f2( f1(x)))) with respect
to the parameters w1, w2, and w3, where wi is a parameter
in function fi, ∀i ∈ {1,2,3}.

∂ s
∂w1

= z3 ·
∂ f3( f2( f1(x)))

∂w1

= z3 · z2 ·
∂ f2( f1(x))

∂w1

= z3 · z2 · z1 ·
∂ f1(x)

∂w1

= z3 · z2 · z1 ·
∂ f1

∂w1
(x)

∂ s
∂w2

= z3 · z2 ·
∂ f2( f1(x))

∂w2

= z3 · z2 ·
∂ f2

∂w2
( f1(x))

∂ s
∂w3

= z3 ·
∂ f3( f2( f1(x)))

∂w3

= z3 ·
∂ f3

∂w3
( f2( f1(x)))

where z3 = f ′4( f3( f2( f1(x)))), z2 = f ′3( f2( f1(x))), and
z1 = f ′2( f1(x)). Note in this example w1 appears in f1(x)

x x

t a t̂ t1[y/x] a′ t̂1
(x⇒ t1)(t) a y← t̂; a′ t̂1

t a t̂ s[y/x] a′ ŝ
(x⇒ s)(t) a y← t̂; a′ ŝ

t a t̂
F (t) a y← t̂; F (y)

t1 a1 t̂1 t2 a2 t̂2
t1 + t2 a1 y1← t̂1; a2 y2← t̂2; y1 + y2

t a t̂
s · t a y← t̂; s · y

Figure 7: Static single assignment transformation, where
y variables are fresh and we assume that scalar function
application does not appear inside a tensor expression.

but not in x, w2 appears in f2( f1(x)) but not f1(x), and
w3 appears in f3( f2( f1(x))) but not in f2( f1(x)).

Direct computation of the above expressions is not ef-
ficient since they contain a lot of redundancies such as
the repeated evalution of z3. The redundancies can be
removed using common subexpression elimination but it
is slow for complex DNN. Fortunately, we can use the
reverse accumulation method [31, 6] to derive parameter
gradients efficiently without redundancy.

Reverse accumululation Before gradient derivation of
a loss expression s, we first perform a static single assign-
ment (SSA) transformation to s, which result in expres-
sion of the form

y1← t̂1;
. . .

yn← t̂n;
ŝ

where yi ← t̂i is an assignment of t̂i to yi and ŝ is s with
its tensor subexpressions replaced by tensor variables yi.

Let a represent a sequence of assignments.

a ::= ε

| y← t̂; a

Figure 7 defines the SSA transformation rules of the
form e a; ê, which transforms expression e to a se-
quence of assignment a followed by ê. After transforma-
tion, the tensor and scalar has the following syntax.



t ::= x,y,z,w variables
| F (y) application
| I⇒ s tensor exp
| y1 + y2
| s · y

s ::= v constant
| x(I) tensor element
| ∑I(s) scalar sum
| log(s) | exp(s) | sn

| s1 + s2 | s1× s2
. . .

Parameter gradients Given a scalar expression s, the
gradient of s with respect to a parameter wk is defined by

∂ s
∂wk

= ∑
i

∂ s
∂ ti
· ∂ ti

∂wk

where each ti is a subexpression of s that contains wk.

The gradient
∂e
∂ t j

defined by the equation

∂e
∂ t j

= ∑
i

∂e
∂ ti
· ∂ ti

∂ t j

where each ti is a subexpression of e that contains t j.
After SSA transformation, each subexpression ti in s

and e is replaced by a variable yi defined by the assign-
ment yi← t̂i and the scalar s becomes ŝ. Then, parameter
gradients can be derived as follows:

1. Derive
∂ t̂i
∂y j

for each t̂i and for each y j in t̂i.

2. Define the variable z j with the assignments

z j←


∂ ŝ
∂y j

y j appears in ŝ

∑
i

zi ·
∂ t̂i
∂y j

y j appears in t̂i

where for simplicity, we assume that variables in ŝ
do not appear elsewhere.

3. If wk is a parameter in s, then

∂ s
∂wk

= ∑
i

zi ·
∂ t̂i

∂wk

where t̂i contains wk.

For the last example s = f4( f3( f2( f1(x)))), applying
SSA transformation to s, we obtain the following result.

y1← t̂1
y2← t̂2
y3← t̂3
ŝ

where t̂1 = f1(x), t̂2 = f2(y1), t̂3 = f3(y2), ŝ = f4(y3).
Using reverse accumulation method, we can obtain the

following statements, where the local variables yi and zi
(i ∈ {1,2,3}) hold intermediate results.

z3← f ′4(y3)
∂ s

∂w3
= z3 ·

∂ f3

∂w3
(y2)

z2← z3 · f ′3(y2)
∂ s

∂w2
= z2 ·

∂ f2

∂w2
(y1)

z1← z2 · f ′2(y1)
∂ s

∂w1
= z1 ·

∂ f1

∂w1
(x)

Gradients of builtin functions If the functions in the
above example are all builtin functions, then the gradi-
ent derivation is complete and the resulting statements
correspond to calls to forward inference and backward
gradient calls of the builtin functions.

For example, if f2 represents convolution function in
Cudnn library, then we have the following correspon-
dence between library functions and tensor expressions.

convolution forward(y1) f2(y1)

convolution backward data(z2, y1) z2 · f ′2(y1)

convolution backward filter(z2, y1) z2 ·
∂ f2

∂w2
(y1)

Gradient of tensors and scalars We do not have high-
level functions for all types of DNN layers and some of
them have to be implemented using low-level functions.
For example, affine transformation is implemented with
a matrix product and a sum. For these functions, we use
tensor/scalar gradient derivation rules to derive gradients

of the form f ′(y) and
∂ f
∂w

(y).
Note that in the rules below, the partial-derivative op-

erator ∂ extends to the rightmost expressions.

Gradient derivation rules
∂ t1 + t2

∂y
=

∂ t1
∂y

+
∂ t2
∂y

(2)

∂ s · t
∂y

= s · ∂ t
∂y

(3)

∂ (D) x
∂y

= (D′)
∂x
∂y

where D′ = T (x) (4)

∂x
∂y

=
∂ I⇒ x(I)

∂y
where D(I) = T (x) (5)

∂ I⇒ s
∂y

= I⇒ ∂ s
∂y

(6)

∂ s
∂y

= I⇒ ∂ s
∂y(I)

where D(I) = T (y) (7)

The gradient derivation rules specify how gradient ex-
pressions are simplified. For example, the gradient of



t1 + t2 is the sum of the gradients of t1 and t2. The gradi-
ent of s · t is the product of s and the gradient of t, where
we assume that s does not contain any tensor variables.

The gradient of a cast expression (D) x with respect

to y is (D′)
∂x
∂y

, where D′ = T (x). (D′)
∂x
∂y

is a tensor

gradient such that the product of a tensor variable z and

(D′)
∂x
∂y

results in a cast expression (D′) (z · ∂x
∂y

).

The gradient of a tensor variable x is the gradient of
the tensor expression I⇒ x(I), where D(I) =T (x). The

gradient of I⇒ s is the scalar gradient
∂ s
∂x

indexed over

the domain of I. The scalar gradient
∂ s
∂y

is the tensor

I⇒ ∂ s
∂y(I)

, where I is a list of fresh indices and D(I) =

T (y).

Note that the more obvious reduction of
∂x
∂y

is a gra-

dient consisting of 1s if x = y or a gradient consisting of
0s if x 6= y. However, for simplicity, we choose to handle
them in the more general way through Rules 5, 6, and 7.

Scalar derivation rules The derivation of
∂ s

∂y(I)
is de-

fined by Rules 8 through 15. Most of scalar derivation
rules are standard except Rule 14, which says that the

derivative of the sum ∑
I′

s is the sum of
∂ s

∂y(I)
. Rule 15

says that the derivative of a tensor element x(I) with re-
spect to x(I′) is obtained through the auxiliary function
match(I, I′), which returns the products of some Kro-
necker deltas.

match(i, i′) = δi i′

match(i · I, i′ · I′) = δi i′ ×match(I, I′)

The Kronecker delta δi i′ reduces to 1 if i and i′ evaluate
to the same index value and it reduces to 0 otherwise.

∂ log(s)
∂y(I)

= s−1× ∂ s
∂y(I)

(8)

∂ exp(s)
∂y(I)

= exp(s)× ∂ s
∂y(I)

(9)

∂ s1 + s2

∂y(I)
=

∂ s1

∂y(I)
+

∂ s2

∂y(I)
(10)

∂ s1× s2

∂y(I)
= s2×

∂ s1

∂y(I)
+ s1×

∂ s2

∂y(I)
(11)

sn

∂y(I)
= (n× sn−1)× ∂ s

∂y(I)
(12)

∂n
∂y(I)

= 0 (13)

∂ ∑I′(s)
∂y(I)

= ∑
I′

∂ s
∂y(I)

(14)

∂x(I)
∂y(I′)

=

{
0 if x 6= y
match(I, I′) otherwise (15)

Syntax of gradients The additional syntax for describ-
ing the gradients of scalars and tensors with respect to
tensor variables can be summarized as follows, where
the symbol g denotes tensor gradients.

t ::= . . .

| z ·g tensor gradient product

g ::= I⇒ I′⇒ s gradient expression

| g1 +g2 gradient sum

| s ·g scalar gradient product

| (D) g gradient cast

| ∂F

∂x
(y) gradient tensor application

s ::= . . .

| δi i′ Kronecker delta

5 High-level Optimization

Simplification of parameter gradients The deriva-

tion of parameter gradients
∂ s

∂wi
results in tensors of the

form z ·g, which should be simplified. After applying the

reduction rules below, all forms of g except
∂F

∂x
(y) are

eliminated from the parameter gradients.



x · (I⇒ I′⇒ s) = I′⇒∑
I

x(I)× s (16)

x · (g1 +g2) = x ·g1 + x ·g2 (17)
x · (s ·g) = s · (x ·g) (18)
x · (D) g = (D) x ·g (19)

The tensors can be further simplified with reduction
rules below in order to remove the Kronecker deltas.
These rules are designed to move the sum operator ∑ix
inwards as much as possible until it meets a Kronecker
delta δi i′ where i is a function f of ix. By the syntax of
index in Figure 3, f is an invertible function. Since δi i′

equals to 1 iff i and i′ reduce to the same value, which is
when ix = f−1(i′), we can reduce ∑ix δi i′ × s to s with ix
in s replaced by f−1(i′).

∑
I

s+ s′ = ∑
I

s+∑
I

s′ (20)

∑
ix

s× s′ = s×∑
ix

s′ ix is not used in s (21)

∑
ix

δ f (ix) i′ × s = s[ f−1(i′)/ix] (22)

∑
ix

δ f (ix) i′ = 1 (23)

s× (s1 + s2) = s× s1 + s× s2 (24)
s · (s′ · t) = (s× s′) · t (25)

The reduction rules will eliminate all Kronecker
deltas, which are reduced from the derivative of a tensor
element with respect to another tensor element. The in-
dex variables in I in each tensor element x(I) are bound
by either a sum expression or a tensor expression. In
the first case, the sum eliminates the deltas. In the sec-
ond case, x(I) appears in a tensor of the form I1 ⇒ s,
where the index variables in I are defined in I1. The

deltas are in tensor of the form z · ∂ I1⇒ s
∂x

, which re-

duces to z · (I1⇒ I2⇒
∂ s

∂x(I2)
) by Rule 7, which reduces

to I2 ⇒ ∑I1 z(I1)×
∂ s

∂x(I2)
by Rule 16. After reduction,

the sum operator will eliminate the deltas from
∂ s)

∂x(I2)
.

Syntax after simplification After symbolic reduction,
the parameter gradients are reduced to tensors of the fol-
lowing syntax.

t ::= . . .

| z · ∂F

∂x
(y) tensor gradient product

i ::= . . .

| i1− i2 | i+n

where z · ∂F

∂x
(y) represents a backward gradient of F .

Indices of the form of i1− i2 and i+ n appear in the
gradients of convolution after the simplification of Kro-
necker delta and they have the following typing rules.

Γ ` i1 : d1 Γ ` i2 : d2

Γ ` i1− i2 : d1−d2 +1
Γ ` i : d

Γ ` i+n : d +2n

We have defined typing rules for indices of the forms
i1 + i2 and i− n, which are used in tensor convolution.
The rule on i1− i2 is the inverse of the rule on i1 + i2
while the rule on i+n is the inverse of the rule on i−n.

In the current form, tensors and parameter gradients
can be evaluated. However, the direct evaluation of ten-
sor expressions of the form I ⇒ s is inefficient. For
example, to evaluate (i1 · i3)⇒ ∑i2 x(i1 · i2)×w(i2, i3),
we need to have a double loop (outer loop for index i1
and inner loop for i3) where the loop body evaluates
∑i2 x(i1 · i2)×w(i2, i3). A more efficient evaluation strat-
egy is to further transform tensors into forms that can be
mapped to functions in high-performance libraries.

Trivial simplification rules We also apply some obvi-
ous simplifcation rules to reduce tensors and scalar ex-
pressions that involve 1 and 0.

For example, 1 · t = t, 0 · t = 0, 1× s = s, 0× s = 0,
0+ s = s, s · 0 = 0, and 0+ t = t, where 0 represents a
tensor of the form I⇒ 0 or (D) I⇒ 0.

Vectorization Tensors of the form of F (y) and z ·
∂F

∂x
(y) can be mapped to high-level functions in li-

braries such as Cudnn. Thus, we focus on transforming
tensor expressions into the computation of vectors and
matrices so that they can be mapped to low-level func-
tions in libraries such as Cuda. We call this reduction
step vectorization.



I⇒ sn = (I⇒ s)n (26)
I⇒ exp(s) = exp(I⇒ s) (27)
I⇒ log(s) = log(I⇒ s) (28)
I⇒ s1× s2 = s1 · (I⇒ s2) ∀i ∈ {I}. i is not used in s1 (29)
I⇒ s1× s2 = (I⇒ s1).∗ (I⇒ s2) (30)
I⇒ s1 + s2 = (I⇒ s1)+(I⇒ s2) (31)
I⇒ x(I) = x T (x) = D(I) (32)

∑
I

s1× s2 = s1×∑
I

s2 ∀i ∈ {I}. i is not used in s1 (33)

∑
I

s1× s2 = (I⇒ s1) · (I⇒ s2) (34)

∑
I

s = ∑(I⇒ s) (35)

I⇒∑ I′⇒ s = ∑
|I′|
(I · I′)⇒ s (36)

I⇒ (I′⇒ s1) · (I′⇒ s2) = (I1 · I′)⇒ s1 ×|I′| (I2 · I′)⇒ s2

I = I1 · I2
∀i ∈ {I1}. i is not used in s2
∀i ∈ {I2}. i is not used in s1

(37)

I⇒ s = I⇒ (I′⇒ s)(I′)
s is not a tensor element, {I′} ⊂ {I}
∀i ∈ {I}\{I′}. i is not used in s (38)

Figure 8: Rules for vectorization, where {I} represents the set of indices in I.

Syntax after vectorization

t ::= . . .

| z · ∂F

∂x
(y) tensor gradient product

| exp(t) | log(t) | tn

| t1.∗ t2 pointwise product

| t1×n t2 tensor contraction

| ∑n t partial sum of tensor

s ::= . . .

| t1 · t2 inner product

| ∑ t sum of tensor

| t(I) tensor element

The vectorization rules introduce a few types of ex-
pressions, some of which have direct correspondence
to low-level functions in libraries. The expression
exp(t)/log(t)/tn is an exponentiation/logarithm/power of
tensor, which is the same as applying exponentiation/log-
arithm/power to the tensor elements. For these expres-
sions, the tensor can be treated as a vector so that each of
operations can be mapped to library function that applies
exponentiation/logarithm/power to a vector.

The expression t1. ∗ t2 is a pointwise product of two
tensors t1 and t2, which have the same type. This expres-
sion can be mapped to a library function for the inner
product of two vectors.

The partial-sum expression ∑n t sums up the lower n
axis of t and it has the typing rule:

Γ ` t : D1 ·D2 |D2|= n
Γ ` ∑n t : D1

The partial-sum of tensor can be mapped to the matrix
product A×B, where A is a n1× n2 matrix 4 converted
from t, B is a n2×1 matrix consisted of 1s, and ni is the
flattened size of Di, ∀i ∈ {1,2}, Converting the tensor
value evaluated from t to A takes constant time since they
have the same array representation.

For example, if t is a tensor with the type 3 · 4 · 5 · 6,
then ∑2 t is a tensor of the type 3 ·4. We can convert t to
a 12×30 matrix A and sum up each row of A to obtain a
vector of size 12, which is the same as ∑2 t as an array.

The contraction expression t1 ×n t2 performs inner
products of the lower n axis of t1 and t2 and it has the
typing rule:

Γ ` t1 : D1 ·D3 Γ ` t2 : D2 ·D3 |D3|= n
Γ ` t1×n t2 : D1 ·D2

4Matrices in this work are row-major.



The tensor contraction can be mapped to matrix product
A× BT , where A is a n1 by n3 matrix converted from
t1, B is a n2 by n3 matrix converted from t2, ni is the
flattened size of Di for i∈{1,2,3}. Converting the tensor
values evaluated from t1 and t2 to A and B respectively
also takes constant time.

For example, if t1 has the type 2 ·3 ·5 ·6 and t2 has the
type 4 · 5 · 6, then t1×2 t2 has the type 2 · 3 · 4. We can
convert t1 to a 6× 30 matrix and convert t2 to a 4× 30
matrix. Then A×BT is a 6×4 matrix, which is the same
as t1×2 t2 as an array.

The expression t1 · t2 is the inner product of t1 and t2,
which have the same type. The expression ∑ t sums over
the tensor t. The expression t(I) represents the element
of the tensor t.

A tensor of the form (I1 · I2)⇒ t(I1), where indices
in I2 do not appear in t, is a tensor where each element
of t is replicated n2 times and n2 is the flattened size of
D(I2). This can be implemented as a matrix product A×
B, where A is a n1×1 matrix converted from t, n1 is the
flattened size of D(I1), and B is a 1×n2 matrix of 1s.

A tensor of the form (I1 · I2)⇒ t(I2), where indices in
I1 do not appear in t, is a tensor that is n1 consecutive
copies of t, where n1 is the flattened size of D(I1). This
can be implemented as a matrix product A×B, where A
is a n1× 1 matrix of 1s, B is a 1× n2 matrix converted
from t, and n2 is the flattened size of D(I2).

Vectorization rules Figure 8 shows the vectorization
rules, where Rule 26 to 31 lift operators on scalars in
tensor expressions to the outside so that they become op-
erators on tensors. For example, I ⇒ exp(s) is a tensor
expression where each element is an exponentiation of
a scalar expression s. By Rule 27, this is reduced to
exp(I ⇒ s), which is the exponentiation of the tensor
I ⇒ s. In Rule 30, the product of scalars becomes the
pointwise product .∗ of tensors.

Rule 32 simplifies I⇒ x(I) to just x if the dimensions
of I are the same as the type of x. Rule 33 factors out
scalars independent of the sum indices. Rule 34 reduces
the sum of scalar products to the inner product of two
tensors. The sum of scalar is reduced to sum of tensor by
Rule 35. Rule 36 turns a tensor expression that contains
a tensor sum into the partial sum of a tensor.

Rule 37 converts I ⇒ (I′ ⇒ s1) · (I′ ⇒ s2) into ten-
sor contraction if I can be divided into I1 and I2 with-
out changing order of indices so that indices in I1 are
not used in s2 and indices in I2 are not in s1. Note that
convolution can be converted to matrix product through
Rule 34 and 37. However, there are more efficient im-
plementation in existing libraries such as Cudnn so that
convolution should be treated as builtin functions.

In an tensor expression I ⇒ s, not all indices in I are
used in s. Rule 38 factors out the indices not used in s

and reduces the tensor expression to I⇒ (I′⇒ s)(I′) so
that all indices in I′ are used in s. I′⇒ s may be reduced
further and evaluated separately.

For example,

(i1 · i2)⇒∑ i3⇒ x(i1 · i3)
= (i1 · i2)⇒ (i1⇒∑ i3⇒ x(i1 · i3))(i1) by Rule 38

= (i1 · i2)⇒ (∑
1
(i1 · i3)⇒ x(i1 · i3))(i1) by Rule 36

= (i1 · i2)⇒ (∑
1

x)(i1) by Rule 32

where ∑1(i1 · i3)⇒ x(i1 · i3) partially sums up (i1 · i3)⇒
x(i1 · i3) with its lower 1 axis, which is i3.

5.1 Examples
In this section, we explain the application of rules for the
gradient derivation, symbolic reduction, and vectoriza-
tion using examples from Section 3.4.

Affine transformation In Figure 9, the tensor ty is the
output of affine transformation with input x, weight w,

and bias b. Figure 9 also shows the reduction of
∂ ty
∂x

and

the backward gradient of x, which is zy ·
∂ ty
∂x

, where zy is
the backward gradient of ty.

Flattening Below ty is the result of flattening the lower
3 axis of the tensor x, zy is the backward gradient of ty,
and zx is the backward gradient of x.

ty = (d1 · (d2×d3×d4)) x

zx = zy ·
∂ ty
∂x

= zy ·
(d1 · (d2×d3×d4)) x

∂x

= zy · (d1 ·d2 ·d3 ·d4)
∂x
∂x

by Rule 4

= (d1 ·d2 ·d3 ·d4) zy ·
∂x
∂x

by Rule 19

= (d1 ·d2 ·d3 ·d4) zy

where D(x) = d1 ·d2 ·d3 ·d4.
The last reduction step, though obvious, takes a few

steps to complete by following the rules:

zy ·
∂x
∂x

= zy · (I⇒ I′⇒ ∂x(I)
∂x(I′)

) by Rule 5, 6, 7

= I′⇒ ∑I(zy(I)×
∂x(I)
∂x(I′)

) by Rule 16

= I′⇒ zy(I′) by Rule 15, 22

= zy by Rule 32

where D(I) = D(I′) = T (x).



ty = (i1 · i3)⇒∑
i2

x(i1 · i2)×w(i2 · i3)+b(i1)

∂ ty
∂x

= (i1 · i3)⇒ (i′1 · i′2)⇒
∂ ∑i2 x(i1 · i2)×w(i2 · i3)+b(i1)

∂x(i′1 · i′2)
by Rule 6, 7

= (i1 · i3)⇒ (i′1 · i′2)⇒∑
i2

∂x(i1 · i2)
∂x(i′1 · i′2)

×w(i2 · i3) by Rule 10, 11, 15

= (i1 · i3)⇒ (i′1 · i′2)⇒∑
i2

δi1 i′1
×δi2 i′2

×w(i2 · i3) by Rule 15

= (i1 · i3)⇒ (i′1 · i′2)⇒ δi1 i′1
×∑

i2

δi2 i′2
×w(i2 · i3) by Rule 21

= (i1 · i3)⇒ (i′1 · i′2)⇒ δi1 i′1
×w(i′2 · i3) by Rule 22

zx = zy ·
∂ ty
∂x

= zy · ((i1 · i3)⇒ (i′1 · i′2)⇒ δi1 i′1
×w(i′2 · i3))

= (i′1 · i′2)⇒∑
i1

∑
i3

zy(i1 · i3)×δi1 i′1
×w(i′2 · i3) by Rule 16

= (i′1 · i′2)⇒∑
i1

δi1 i′1
×∑

i3

zy(i1 · i3)×w(i′2 · i3) by Rule 21

= (i′1 · i′2)⇒∑
i3

zy(i′1 · i3)×w(i′2 · i3) by Rule 22

= (i′1 · i′2)⇒ (i3⇒ zy(i′1 · i3)) · (i3⇒ w(i′2 · i3)) by Rule 34
= ((i′1 · i3)⇒ zy(i′1 · i3))×1 ((i′2 · i3)⇒ w(i′2 · i3)) by Rule 37
= zy×1 w by Rule 32

Figure 9: Gradient derivation of affine transformation

Convolution Let ty be the result of a convolution layer
with stride 1 and padding 0 defined in Figure 10, where
x is input, w is weight, and b is bias. If zy is the back-
ward gradient of ty, then the gradient of ty against x is
∂ ty
∂x

and the backward gradient of x is zy ·
∂ ty
∂x

, which can
be derived as in Figure 10.

Loss The loss expression s and its backward gradient
zx are defined in Figure 11, where y is the ground truth
and x is the predicted classification.

Log softmax The gradient derivation of log softmax is
shown in Figure 12. After common subexpression elim-
ination of both ty and zx, we can have the following:

x1← exp(x)

x2←∑
1

x1

ty = x− f (log(x2))

zx = zy− f (∑
1

zy).∗ x1.∗ ( f (x2))
−1

where f (t) is defined as (in · ik)⇒ t(in).
Note that in most cases, zy is the backward gradient of

the loss expression, which is (− 1
dn

) ·y and each row of y

is a unit vector. With this knowledge, we can reduce zx

to
1
dn
· (x1. ∗ ( f (x2))

−1− y), which is
1
dn
· (exp(ty)− y).

However, this reduction is based on domain knowledge
and is out of the scope of rule-based reduction.

6 Low-level Optimization

Inlining Since the generated code calls functions in li-
braries such as Cuda and Cudnn, there are opportunities
to take advantage of the library functions that perform
multiple computation the same time.

A Cuda or Cudnn function takes a number of tensor
and scalar parameters and returns a number that either
means success or is a failure code. The tensor parame-
ters can be for input, for output, or both. For instance, a
Cudnn function fcudnn for computing backward gradient



ty = (in · ik · ih · iw)⇒∑
ic

∑
iu

∑
iv

x(in · ic · ih + iu · iw + iv)×w(ik · ic · iu · iv)+b(ik)

∂ ty
∂x

= (in · ik · ih · iw)⇒
∂ ∑ic ∑iu ∑iv x(in · ic · ih + iu · iw + iv)×w(ik · ic · iu · iv)+b(ik)

∂x
by Rule 6

= (in · ik · ih · iw)⇒ (i′n · i′c · ir · is)⇒∑
ic

∑
iu

∑
iv

δin i′n ×δic i′c ×δih+iu ir ×δiw+iv is ×w(ik · ic · iu · iv) by Rule 7, 10, 11, 15

= (in · ik · ih · iw)⇒ (i′n · i′c · ir · is)⇒ δin i′n ×∑
ic

∑
iu

∑
iv

δic i′c ×δih+iu ir ×δiw+iv is ×w(ik · ic · iu · iv) by Rule 21

= (in · ik · ih · iw)⇒ (i′n · i′c · ir · is)⇒ δin i′n ×w(ik · ic · iu · iv)[i′c/ic, ir− ih/iu, is− iw/iv] by Rule 22

= (in · ik · ih · iw)⇒ (i′n · i′c · ir · is)⇒ δin i′n ×w(ik · i′c · ir− ih · is− iw)

zx = zy ·
∂ ty
∂x

= (i′n · i′c · ir · is)⇒∑
in

∑
ik

∑
ih

∑
iw

zy(in · ik · ih · iw)×δin i′n ×w(ik · i′c · ir− ih · is− iw) by Rule 16

= (i′n · i′c · ir · is)⇒∑
in

(∑
ik

∑
ih

∑
iw

zy(in · ik · ih · iw)×w(ik · i′c · ir− ih · is− iw))×δin i′n by Rule 21

= (i′n · i′c · ir · is)⇒∑
ik

∑
ih

∑
iw

zy(i′n · ik · ih · iw)×w(ik · i′c · ir− ih · is− iw) by Rule 22

= (i′n · i′c · ir · is)⇒ ((ik · ih · iw)⇒ zy(i′n · ik · ih · iw)) · ((ik · ih · iw)⇒ w(ik · i′c · ir− ih · is− iw)) by Rule 34
= (i′n · ik · ih · iw)⇒ zy(i′n · ik · ih · iw)×3 (i′c · ir · is · ik · ih · iw)⇒ w(ik · i′c · ir− ih · is− iw) by Rule 37
= zy×3 (i′c · ir · is · ik · ih · iw)⇒ w(ik · i′c · ir− ih · is− iw) by Rule 32

Figure 10: Gradient derivation of convolution

f has the form:

fcudnn(x1, . . . ,xn,zy,α,β )

which computes

zy← α× f (x1, . . . ,xn)+β × zy

where x1, . . . ,xn are input tensors, zy is the input/output
tensor, and α , β are scaling factors.

To call this function, we pass 1 to α and 0 to β so that
it effectively computes:

zy← f (x1, . . . ,xn)

However, zy is often used in gradient update of the form:

y← α
′× zy +β

′× y

Running the two statements separately not only con-
sumes more time but also extra memory to hold zy. In
this case, it is more efficient to inline the update in the
backward gradient computation to save time and space.

fcudnn(x1, . . . ,xn,y,α ′,β ′)

which computes

y← α
′× f (x1, . . . ,xn)+β

′× y

Update statements can also be inlined into other
GEMM (general matrix multiplication) calls such as ma-
trix product. In general, inlining an update statement
such as y = α ′× zy +β ′× y is possible only if zy is not
used in other computation.

Other than updates, we can also inline plus operations
for some computation. For example, statements like y←
y1 + y2 and y2← f (x1, . . . ,x2) can be merged into

y1← 1× f (x1, . . . ,x2)+1× y1

if y2 are not used in other computation and y1 is not used
in subsequent computation since it will be overwritten.
Also, any occurrences of y is replaced by y1. Note that
y1← 1× f (x1, . . . ,x2)+1×y1 corresponds to the library
call fcudnn(x1, . . . ,x2,y1,1,1), where y1 is the input/out-
put parameter.

In-place computation The results of the operations
such as tensor sum, tensor scalar product, point-wise ten-
sor products, and the forward inference and backward
gradient of activation layers can be stored in the mem-
ory of their input tensors if the inputs are not used in
subsequent computation. In-place updates like these are



s = ∑
in

∑
ik

y(in · ik)× x(in · ik)× (− 1
dn

)

zx =
∂ s
∂x

= (i′n · i′k)⇒∑
in

∑
ik

y(in · ik)×δin i′n ×δik i′k
× (− 1

dn
) by Rule 7, 11, 15

= (i′n · i′k)⇒ y(i′n · i′k)× (− 1
dn

) by Rule 22

= (− 1
dn

) · (i′n · i′k)⇒ y(i′n · i′k) by Rule 29

= (− 1
dn

) · y by Rule 32

Figure 11: Gradient derivation of loss expression

possible since the input tensor has the same size as the
output tensor.

For example, if y← f (x) computes the forward infer-
ence of an activation layer with input x, then the actual
call to the Cudnn function has the form of

y← 1× f (x)+0× y

We can avoid allocating memory for y by rewriting it as

x← 1× f (x)+0× x

For tensor sum, y← x1 + x2, we write it as

x1← x1 + x2

To perform in-place computation, the overwritten ten-
sor x must not be used in later statements. Alternatively,
we can always use in-place computation for expressions
such as tensor sum and if the overwritten tensor x1 is
used in a later statement, we make a copy of x1 in that
statement.

7 Code Scheduling

Next step is to schedule computation based on def-use
dependency (i.e. the use of a variable must follow its
definition) and also use heuristics to reduce peak mem-
ory usage. There are many possible schedules that sat-
isfy the def-use dependency requirement. Since most of
the statements allocate memory to store temporary re-
sult, some scheduling will result in higher peak memory
usage than necessary.

To illustrate the scheduling process, consider the fol-
lowing network.

where f1 to f5 are tensor to tensor functions and f6 is
a tensor to scalar function. Also, w1, w2, w3, and w5 are
the weight parameters in f1, f2, f3, and f5 respectively.
The scalar expression s represents the loss of a network
with input x, where

y1 ← f1(x) y2← f2(y1) y3← f3(x)
s ← f6(y5) y5← f5(y4) y4← f4(y2,y3)

Direct gradient derivation of the loss expression
against each parameter results in the following equations,
which contain multiple redundant computation steps.

∂ s
∂w1

= f ′6(y5) · f ′5(y4) ·
∂ f4

∂x1
(y2,y3) · f ′2(y1) ·

∂ f1

∂w1
(x)

∂ s
∂w2

= f ′6(y5) · f ′5(y4) ·
∂ f4

∂x1
(y2,y3) ·

∂ f2

∂w2
(y1)

∂ s
∂w3

= f ′6(y5) · f ′5(y4) ·
∂ f4

∂x2
(y2,y3) ·

∂ f3

∂w3
(x)

∂ s
∂w5

= f ′6(y5) ·
∂ f5

∂w5
(y4)

Note that the function f4 has two parameters, which we
assume to be x1 and x2. While for functions of one pa-
rameter such as f2, we write its derivative as f ′2, we write

the derivatives of f4 as
∂ f4

x1
and

∂ f4

x2
.

If we use reverse accumulation method, we can obtain



ty = x− (in · ik)⇒ log(∑il exp(x(in · il))) = x− f (in⇒ log(∑il exp(x(in · il)))) by Rule 38
= x− f (log(in⇒ ∑(il ⇒ exp(x(in · il))))) = x− f (log(∑1(in · il)⇒ exp(x(in · il)))) by Rule 28, 36
= x− f (log(∑1 exp((in · il)⇒ x(in · il)))) = x− f (log(∑1 exp(x))) by Rule 27, 32

∂ ty
∂x

=
∂ (x− (in · ik)⇒ log(∑il exp(x(in · il))))

∂x

= ((in · ik)⇒ (i′n · i′k)⇒
∂x(in · ik)
∂x(i′n · i′k)

)− ((in · ik)⇒ (i′n · i′k)⇒
∑il exp(x(in · il))×

∂x(in · il)
∂x(i′n · i′k)

∑il exp(x(in · il))
) by Rule 6, 7, 8, 9

= ((in · ik)⇒ (i′n · i′k)⇒ δin i′n ×δil i′k
)− ((in · ik)⇒ (i′n · i′k)⇒

exp(x(in · i′k))×δin i′n

∑il exp(x(in · il))
) by Rule 15, 22

zx = zy ·
∂ ty
∂x

= ((i′n · i′k)⇒ zy(i′n · i′k))− ((i′n · i′k)⇒∑
in

∑
ik

zy(in · ik)×
exp(x(in · i′k))×δin i′n

∑il exp(x(in · il))
) by Rule 16, 22

= zy− (i′n · i′k)⇒∑
ik

zy(i′n · ik)×
exp(x(i′n · i′k))

∑il exp(x(i′n · il))
by Rule 32, 21, 22

= zy− (i′n · i′k)⇒∑
ik

zy(i′n · ik) .∗ (i′n · i′k)⇒ exp(x(i′n · i′k)) .∗ (i′n · i′k)⇒ (∑
il

exp(x(i′n · il)))−1 by Rule 30

= zy− (i′n · i′k)⇒∑
ik

zy(i′n · ik) .∗ exp((i′n · i′k)⇒ x(i′n · i′k)) .∗ ((i′n · i′k)⇒∑
il

exp(x(i′n · il)))−1 by Rule 27, 26

= zy− ((i′n · i′k)⇒∑ ik⇒ zy(i′n · ik)) .∗ exp(x) .∗ ((i′n · i′k)⇒∑ il ⇒ exp(x(i′n · il)))−1 by Rule 32, 35

= zy− f (i′n⇒∑ ik⇒ zy(i′n · ik)) .∗ exp(x) .∗ ( f (i′n⇒∑ il ⇒ exp(x(i′n · il))))−1 by Rule 38

= zy− f (∑
1
(i′n · ik)⇒ zy(i′n · ik)) .∗ exp(x) .∗ ( f (∑

1
(i′n · il)⇒ exp(x(i′n · il))))−1 by Rule 36

= zy− f (∑
1

zy).∗ exp(x).∗ ( f (∑
1

exp((i′n · il)⇒ x(i′n · il))))−1 by Rule 32, 27

= zy− f (∑
1

zy).∗ exp(x).∗ ( f (∑
1

exp(x)))−1 by Rule 32

Figure 12: Gradient derivation of log softmax, where f (t) is defined as (in · ik)⇒ t(in).

the following equations without redundancy.

z1 ← z2 · f ′2(y1)

z2 ← z4 ·
∂ f4

∂x1
(y2,y3)

z3 ← z4 ·
∂ f4

∂x2
(y2,y3)

z4 ← z5 · f ′5(y4)

z5 ← f ′6(y5)

zw1 ← ∂ s
∂w1

= z1 ·
∂ f1

∂w1
(x)

zw2 ← ∂ s
∂w2

= z2 ·
∂ f2

∂w2
(y1)

zw3 ← ∂ s
∂w3

= z3 ·
∂ f3

∂w3
(x)

zw5 ← ∂ s
∂w5

= z5 ·
∂ f5

∂w5
(y4)

For this example, the definition of zw5 is ready to com-
pute after z5 is available. However, if we schedule the
definition of zw5 after zw1 , then some dependencies of the
definition of zw5 (i.e. z5 and y4) will be held in memory
longer than necessary. To reduce peak memory usage,
it is preferable to schedule a definition closer to its uses
to reduce the overlap between holding the result of the
definition in memory and other computation.

However, the dependency relations of the statements
form a directed acyclic graph (DAG). The problem of
finding an optimal schedule of computation in terms
of minimizing the memory consumption in a DAG is
NP-complete even when all graph nodes have the same
size [41]. Since a DL network can have thousands of
statements, it would be too time-consuming to find the



most memory efficient schedule. Note that there exists
a polynomial time solution [4] for optimal scheduling if
the dependency relation is a tree, which unfortunately is
not the case here. Therefore, we adopt a simple heuristics
by scheduling statements based on a definition of height
in the dependency graph.

1. Let statements form DAG (V,E) based on depen-
dency – (s1,s2) ∈ E iff s2 depends on s1. We say
s1 is the parent of s2 and s2 is the child of s1 in this
DAG.

2. Height of a node is initialized to 0 if it has no parent.
For other node, initialize its height as the maximum
height of its parents + 1.

3. For each parameter gradient zwi , in increasing order
of its height,

(a) schedule the ancestor nodes of zwi that have
not been computed in increasing order of their
heights.

(b) schedule to compute zwi

The purpose of this modified definition of height is to
make sure that a statement is scheduled to run only if its
result is ready for use by at least one statement. In other
words, we will not hold results in memory before they
are ready for use.

Finally, tensors that hold intermediate results can be
deallocated at the earliest point that it is no longer used.
In the scheduled statements in Figure 13, we show the
tensors that are alive after executing each statement,
where we do not list parameter gradients such as zw5
since they will be used for updating parameters. In our
empirical evaluation, this algorithm is fast and yields
memory-efficient scheduling.

8 Code Generation and Runtime

For each DNN, we generate a Java class that contains a
method to compute the forward inference and a method
to compute the backward gradient by calling Cuda and
Cudnn functions. Users can modify the generated Java
source to implement any learning strategies. While the
backward gradient method contains all the computation
of the forward inference method, the former does not call
the latter since many local variables of the forward in-
ference computation are used in the backward gradient
computation and these local variables must be deallo-
cated as soon as possible.

The generated class stores the network parameters as
fields, which are either initialized by specified strategies
or loaded from disk. The backward gradient method up-
dates these parameter fields each time it is called. When

Statement Height Live Variables
y1← f1(x) 0 y1

y3← f3(x) 0 y1,y3

y2← f2(y1) 1 y1,y2,y3

y4← f4(y2,y3) 2 y1,y2,y3,y4

y5← f5(y4) 3 y1,y2,y3,y4,y5

z5← f ′6(y5) 4 y1,y2,y3,y4,z5

zw5 ← z5 ·
∂ f5

∂w5
(y4) 5 y1,y2,y3,y4,z5

z4← z5 · f ′5(y4) 5 y1,y2,y3,z4

z3← z4 ·
∂ f4

∂x2
(y2,y3) 6 y1,y2,y3,z4,z3

zw3 ← z3 ·
∂ f3

∂w3
(x) 7 y1,y2,y3,z4

z2← z4 ·
∂ f4

∂x1
(y2,y3) 6 y1,z2

zw2 ← z2 ·
∂ f2

∂w2
(y1) 7 y1,z2

z1← z2 · f ′2(y1) 7 z1

zw1 ← z1 ·
∂ f1

∂w1
(x) 8

Figure 13: Scheduled statements, their heights, and live
variables at each statement.

training is completed, the parameter tensors are saved to
disk through Java class serialization.

We invoke Cuda and Cudnn functions through some
wrapper classes. For instance, the wrapper class for con-
volution contains calls for convolution forward, back-
ward gradient of data and filter. The instances of these
wrapper classes can be reused so that they are stored in
the fields of the generated class as well. Some wrapper
classes for layers such as batch-norm contain persistent
states that can be saved for later use.

Java API The generated Java source program uses
the DeepDSL Java API to call Cuda/Cudnn functions
through JCuda. Two of the main classes in the Java
API are JTensorFloat and JCudaTensor, which imple-
ment tensor computation in CPU and GPU respectively.
The JTensorFloat class is responsible for storing train-
ing data, initializing network parameters, loading saved
parameters from files, and saving trained parameters into
files.

The generated Java program automatically saves
trained network parameters into files by serializing the
JTensorFloat objects that store these parameters in a



designated directory. When the user restarts the same
Java program, the program will first attempt to load net-
work parameters from the files in the same directory and
initialize the parameters as specified if the files are not
found. The saved network parameters can also be used
for inference.

A JTensorFloat object can be converted to a
JCudaTensor object by copying to GPU memory.
JCudaTensor is used for GPU computation and it can be
converted to JTensorFloat by copying to CPU memory.
The JCudaTensor class also manages GPU memory us-
age in two modes. In the memory efficient mode, tensors
(and convolution workspace) are dynamically allocated
and deallocated in GPU memory. In the runtime efficient
mode, tensors are stored in a reusable tensor memory
pool and the convolution workspace is shared and always
in memory. The tensors and the convolution workspace
are deallocated at the end of the program. In memory ef-
ficient mode, less GPU memory is required but with the
cost of higher runtime overhead.

DL network layers supported by Cudnn library
are accessed through a small set of classes such
as JCudnnConvolution, which calls Cudnn functions
through JCuda. Users can change parameters of these
classes directly for low-level control. For example, users
can set a limit on the total convolution workspace by
modifying a field in JCudnnConvolution. Users can also
modify fields in JCudnnBatchNorm class to change how
the running mean and variance are computed.

Runtime memory management Allocating and deal-
locating memory in Cuda can incur significant overhead.
Therefore, it is preferable to avoid repeated allocation
and deallocation by reusing existing tensor memory. To
this end, we can cache tensor memory by maintaining
a pool of allocated memory segments with known sizes.
Each time a tensor is freed, its memory is returned to
the pool and each time a tensor is allocated, the pool
is checked for memory segment of sufficient size. New
memory is allocated only when the pool does not have
memory segment of suitable size. Using this strategy,
user can observe GPU memory increases during the first
iteration of a training loop and the memory stabilizes
once it reached its peak. The memory segments in the
pool are freed at the end of the program.

To reduce peak memory consumption, we can stop us-
ing tensor caching and allow tensor memory be dynami-
cally allocated and deallocated.

Other than tensor objects, another major source of
memory consumption is convolution workspace, which
can be very large. Since the convolution operations
run sequentially, we can make them share a cached
workspace. The runtime efficient method is to first find
out the largest convolution workspace and allocate that

much memory so that it can be used by any convolution
operations. A more memory-efficient but slower method
is to dynamically allocate convolution workspace before
it is needed and deallocate it right after.

Static memory analysis An advantage of DeepDSL is
that it can analyze the memory usage at each computa-
tion step statically. Once the statements from backward
gradients are derived and scheduled, we can calculate
the tensor memory and workspace required for running
each statements. Based on this, we can find out the cur-
rent memory consumption at each statement depending
on whether tensor memory and workspace memory is
cached. Since we can determine the peak memory con-
sumption for a DNN based on runtime memory manage-
ment strategy, we can statically decide whether it is pos-
sible to run a training program on a particular GPU or
use more memory efficient runtime strategy.

9 Performance

We compared the runtime (Figure 14a) and memory
performance (Figure 14b) of DeepDSL with Caffe and
Tensorflow by running several well-known DL net-
works on a Linux server with a single Nvidia K40c
GPU. The networks include Alexnet [26], Overfeat [40],
Googlenet [44], Vgg [42], and Deep residual network
(Resnet) [18]. We ran DeepDSL in both runtime efficient
mode (denoted as DeepDSL) and memory efficient mode
(denoted as DeepDSL∗ and DeepDSL†) to compare the
tradeoff between time and space.

When compared with Caffe, DeepDSL is 88% faster
in Alexnet, 77% faster in Overfeat, and 69% faster in
Googlenet; DeepDSL is 11% slower in Vgg and 17%
slower in Resnet. When compared with Tensorflow,
DeepDSL is 41% faster in Alexnet, 118% faster in
Googlenet, and 3% faster in ResNet; DeepDSL is 8%
slower in Overfeat and 2% slower in Vgg. Caffe ran
out of memory for Googlenet of batch size 256 and for
Resnet of batch size 64. Tensorflow ran out of memory
for Resnet of batch size 64.

When compared with Caffe, DeepDSL uses 8% less
memory in Alexnet, 48% less in Googlenet, and 59% less
in Resnet; DeepDSL uses 44% more memory in Overfeat
and 16% more in Vgg. Note that while DeepDSL uses
44% more memory in Overfeat than Caffe, DeepDSL is
also 77% faster. DeepDSL is more memory efficient than
Tensorflow in all cases except Vgg.

When compared with DeepDSL in runtime efficient
mode, DeepDSL∗ (no tensor caching) saves 17% mem-
ory for Alexnet, 10% for Overfeat, 18% for Googlenet,
14% for Vgg, and 9% for Resnet. The runtime over-
head of DeepDSL∗ is 18% for Alexnet, 10% for Over-
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Figure 14: Runtime and memory comparison of DeepDSL, Tensorflow, and Caffe, where the network names are
followed by the batch size. DeepDSL∗ and DeepDSL† are performance without tensor cache and without tensor &
workspace cache respectively. Caffe failed to run GoogleNet (batch 256) and both Caffe and Tensorflow failed to run
ResNet (batch 64) due to GPU memory exhaustion.

feat, 12% for Googlenet, 4% for Vgg, and 9% for Resnet.
DeepDSL† reduces memory further by allocating convo-
lution workspace dynamically. Significant reduction is
achieved for Googlenet (44% less than DeepDSL) and
Vgg (17% less) with modest runtime overhead. Note
that memory reduction is less significant if convolution
workspace is a large portion of overall GPU memory
(e.g. 63% of memory use of Overfeat (batch 128) is con-
volution workspace.)

10 Related work

In this section, we review popular DL frameworks as
well as tools that exhibit some unique features by focus-
ing on DL network representation, optimization, and job
scheduling. We also review related work on automatic
differentiation as well as DSLs on scientific computing
with tensors.

10.1 DL frameworks

Caffe [21] implements a DNN as a DAG by connecting
DL network layers with the “Blob” (a 4D tensor array)
construct. Caffe uses the layer-wise coarse-grained ten-
sor arithmetic computation approach and its node in the
computational graph is the layer. It predicts the amount

of memory that is needed for a layer computation and
uses that information to reserve memory in host or GPU.
Caffe’s core implementation is written in pure C++ and
achieves similar performance as that of native code in its
CPU or GPU versions (this also means each new layer re-
quires new function implementations for both CPU and
GPU). The more current Caffe2 [15] improves Caffe in
aspects such as first-class support for large-scale dis-
tributed training using Gloo [19], a communications li-
brary for multi-machine training and Nvidia’s NCCL[35]
for multi-GPU communications. Caffe2 also leverages
Redis [38], an fast in-memory database that is often used
as cache or message broker, to facilitate management of
nodes in distributed training. Finally, Caffe2 support mo-
bile deployment and can run models on lower powered
devices.

Theano [8][46] is a software library typically com-
piles and optimizes the computation graph written in
Python and generates C and/or Cuda code to perform
the computation. Theano derives gradients on compu-
tation graphs that represent DNNs. It optimizes the com-
putation graphs using pattern matching on subgraphs
for redundancy removal, numerical stabilization, and
code specialization. In comparison, DeepDSL represents
DNNs at language level as DSL expressions, where gra-



dient derivation and optimization are based on recursive
application of reduction rules, which is more system-
atic. In addition, the result of optimization for Theano
is compiled program while the result of optimization for
DeepDSL remains a DSL program that can be further op-
timized, analyzed, and transformed into target code. In
practice, Theano has trouble handling complex or deep
DNNs (long chain between inputs and outputs), which
can lead to long compilation time. In comparison, the
compilation of DeepDSL is efficient even for complex
and deep DNNs. For instance, it just takes a few seconds
(5 seconds on a laptop with i5-3200M CPU @ 2.6GHz.)
for DeepDSL to finish the compilation for Googlenet and
Resnet.

Theano was enhanced by wrapper tools such as
Pylearn2[17], Blocks[48] (in parallel with Fuel [48]
– a dataset processing framework), Lasagne[27], and
Keras[24]. These tools improve user interface, add sup-
port to parameterized Theano operations, recurrent neu-
ral networks (RNN) such as Long Short-Term Mem-
ory (LSTM), multi-input and multi-output training, and
training methods such as Nesterov momentum [34], RM-
Sprop [23], and ADAM [25].

TensorFlow [1] shares some of the design paradigm
as that of Caffe. Its core is also written in C++ and
its computation graph is described as a DAG where ten-
sors (similar as Caffe’s blobs) and layers are alternatively
arranged. However, TensorFlow is more fine-grained,
where each node is a tensor operation such as matrix
multiply and convolution. TensorFlow uses a parame-
ter server to analyze and distribute the user defined com-
putational graph. The parameter server performs some
optimization before distributing the DAG and generates
subgraphs from the DAG. The main optimization is at
the operational aspects such as data communication and
memory handling. TensorFlow also performs limited op-
timization on the DAG such as common subexpression
elimination and deadcode elimination. Tensorflow can
map computation to multiple devices using heuristics. It
can impose control flow on the DAG and execute dif-
ferent subgraphs asynchronously. TensorFlow’s tensors
are persistent mutable, which allows them to be reused
across executions of a graph but it also increases the dif-
ficulty of code optimization and debugging.

In comparison, DeepDSL lacks the rich set of features
of Tensorflow and does not support multi-GPU training.
However, DeepDSL has superior memory and runtime
performance on single GPU entirely due to its language-
based optimization.

MXNet [10] provides flexible frontends in multiple
programming languages. It uses multi-output symbolic

expressions to declare the computation graph. The sym-
bolic expressions are composed by operators such as
matrix operation or convolution. An operator can take
several input variables, produce more than one out-
put variables, and have internal state variables. Be-
fore evaluation, MXNet transforms the graph to opti-
mize the efficiency and allocates memory to internal vari-
ables. MXNet reuses memory for variables with non-
intersecting lifetimes within a computation graph. In par-
ticular, MXNet employs scheduling heuristics for mem-
ory optimization. For example, it uses a reference count-
ing to determine when the memory of a variable can be
recycled and it allows two nodes to share a piece of mem-
ory if they do not run in parallel. It uses multiple threads
to schedule the operations for better resource utilization
and parallelization. Like Tensorflow, it can schedule the
execution of computation graph on multiple devices.

In comparison, DeepDSL shares some similar ap-
proaches in memory optimization by reusing tensor
memory of variables that are no longer needed and by
inlining and in-place computation. However, DeepDSL’s
approach is based on static program transformation,
where each type of optimization is implemented as a
separate transformation pass. The runtime memory (for
GPU) of DeepDSL program is managed as a pool of ten-
sors that are allocated once and then reused by the pro-
gram with minimal overhead.

CNTK (Microsoft Cognitive Toolkit [2]) provides a
set of pre-defined Network Definition Language (NDL)
functions (e.g. Convolution, MaxPooling) that are inter-
nally implemented as computational nodes. Users can
also write their own NDL to describe the particular DL
network in consideration. Its computation graph is a
DAG with two types of vertices. The first type represents
basic computation such as add and times, while the sec-
ond type holds operands and has edges towards a com-
putation node. Such low level computation scheme en-
ables CNTK to encode arbitrary computational network
and its core can assign each computation node to a par-
ticular CPU/GPU device. CNTK provides both C++ and
Python API interfaces to define models, learning algo-
rithms, data reading and distributed training. It decides
its computation order via depth-first traversal of the com-
putation graph. It optimizes memory usage by using the
same memory across mini-batches and by sharing mem-
ory across computation nodes when possible. The latter
is achieved by analyzing the execution plan and releasing
the memory back to a pool to be reused whenever possi-
ble. For example, when a node finished computing all its
children’s gradients, the matrices owned by that node can
all be released. Finally, CNTK leverages a technology
named 1-Bit Quantized SGD [39] to quantize gradients
with just 1 bit so that the communication cost between



computation nodes is reduced.
In comparison, DeepDSL define DL networks as DSL

expressions and memory optimization of DeepDSL is
language-based, where memory reuse and sharing are
simply the consequence of compiler-based optimization
and code scheduling.

Torch [11] leverages the Lua language to provide easy
integration with C to achieve C-like performance through
JIT compiler and it has a large set of optimized routines.
In addition to CPU/GPU, it also supports mobile and
FPGA backends. Torch’s core is a N-dimensional array
called Torch tensor and a comprehensive set of routines
such as indexing, slicing, and transposition that operate
on the tensors, Torch supports automatic differentiation
and many existing neural network models. Torch does
not have built-in optimization for memory and runtime
or job scheduling. However, a derivative of Torch, Py-
Torch [36] supports Python frontend, distributed compu-
tation with message passing, custom memory allocators
for the GPU to better memory efficiency.

BigDL [20], modeled after Torch, is the latest DNN
framework from Intel. The main focus of BigDL is to
be a deep learning library for Apache Spark. Therefore,
the user’s DL algorithm written with the BigDL library
works as a standard Spark program. BigDL allows the
user to load pre-trained Caffe or Torch models into Spark
programs. BigDL also claims that it can achieve mag-
nitude faster performance than out-of-box open source
Caffe, Torch or TensorFlow on the intel-based system
with the Intel Math Kernel Library. In other words,
BigDL achieves comparable performance in intel CPU
as that of the mainstream GPU.

DeepLearning4j [45] is a Java-based DL library,
which extends its tensor functionalities from its n-
dimensional array class that is similar to Numpy’s NDAr-
ray, It provides distributed computation through MapRe-
duce [13] framework Spark [51] and Hadoop [49]. In
addition, DeepLearning4j leverages OpenMP for better
parallel performance on CPUs. It improves GPU mem-
ory usage by allocating each GPU memory chunk once
and cache it for further reuse.

Though DeepDSL compiles to Java program, the com-
putation models of DeepDSL and DeepLearning4J are
entirely different. DeepLearning4J implements DL net-
works as graphs, except in Java. Its runtime performance
in our benchmark testing appears to be rather poor on
single GPU due to lack of efficient optimization.

Chainer [47] provides more control-flow flexibility
than other DL libraries. Unlike libraries such as Caffe
and Theano, where computation graph is fixed after

construction, Chainer follows a define-by-run approach,
which allows dynamic changes to the control flow of a
computation graph between training iteration. This is
achieved by storing the order of operations during the
graph construction.

10.2 Automatic differentiation
The computation of derivatives may refer to numerical
differentiation, symbolic differentiation (of mathemati-
cal expressions), or automatic differentiation (of mathe-
matical programs) [6].

Numerical differentiation estimates the derivative
value from the mathematical definition. For example, the
derivative of a function f (x) can be defined by f ′(x) =
limh→0

f (x+h)− f (x)
h . Numerical differentiation is suitable

when the function is unknown and can only be sampled.
Symbolic differentiation manipulates mathematical

expressions. For example, d
dx (x

2 cos(x)) reduces to
x(2cos(x)− xsin(x)). Rules such as product rule and
chain rule are applied to calculate the derivative for each
math expression and the result is simplified to achieve
the final result. Symbolic differentiation may lead to in-
efficient code without sufficient optimization and it may
not be applicable to computation problems that cannot be
expressed as mathematical expressions.

Automatic differentiation [33] manipulates mathemat-
ical programs with control flow logic. Central to auto-
matic differentiation is the application of chain rules to
break down complex expressions into simpler ones and
apply either forward or reverse accumulation [31] to ob-
tain the final result. Forward accumulation directly ap-
plies chain rule to expressions. For example,

d f1( f2( f3(x)))
dx

= f ′1( f2( f3(x)))×
d f2( f3(x))

dx
= f ′1( f2( f3(x)))× f ′2( f3(x))×

d f3(x)
dx

= f ′1( f2( f3(x)))× f ′2( f3(x))× f ′3(x)

Reverse accumulation first computes f ′1( f2( f3(x))), then
f ′1( f2( f3(x)))× f ′2( f3(x)), and finally f ′1( f2( f3(x)))×
f ′2( f3(x))× f ′3(x). Temporary variables are needed to
hold intermediate results. For example, we need to
have the assignments y1 = f ′1( f2( f3(x))) and y2 = y1×
f ′2( f3(x)) so that the final result is y2× f ′3(x).

DeepDSL implements automatic differentiation by ap-
plying the derivation rules to the tensor expression that
encodes DL network. DeepDSL uses a variation of the
reverse accumulation method, which first transforms the
tensor expressions into SSA (static single assignment)
form and then derives all parameter gradients together
without redundant computation.



10.3 DeepDSL as a deeply embedded DSL

One important aspect of the DSL design is whether the
DSL will be external or internal, as this has impacts on
other aspects of the language [12, 5]. An external DSL
typically develops its own parser to recognize the DSL’s
syntax and builds the related infrastructure to form an in-
terpreter or a compiler for the DSL. In contrast, an inter-
nal (or embedded) DSL is implemented on top of a gen-
eral purpose language (i.e. the host language) to reuse
the host language’s infrastructure, such as its parser, syn-
tax, type system, and runtime support. The main ad-
vantages of the former include the ability for the de-
velopers to tune the execution process and to improve
some features such as error control or performance, as
well as the ease to adapt to new concrete syntax require-
ments (sometimes an external DSL is the only choice if
the desired syntax cannot be expressed using the exist-
ing host language syntax). The disadvantages of exter-
nal DSLs include the requirements for large implemen-
tation effort in the details of the execution semantics for
each language construct, and usually the development of
an IDE from scratch, although this can be greatly alle-
viated by tools like xText [14] or Spoofax [22]. The
main advantages of an internal DSL include the reuse of
the infrastructures of the host language (e.g. syntax, se-
mantics, and runtime support) and internal DSL supports
rapid-prototyping when different domain-specific con-
structs can be experimented without involving substan-
tial infrastructure changes. The disadvantages of inter-
nal DSLs include that sometimes implementing domain-
specific optimizations is difficult and there may be per-
formance penalties when it is necessary to change the
host language to obtain some DSL syntax [12].

DeepDSL is designed to be embedded in Scala for a
number of reasons. Firstly, the main focus of DeepDSL
is to encode a deep learning network and its related math-
ematical computation in the form of a set of domain-
specific constructs with flexibility for future extension
such as adding support for feedback networks. As a
host language, Scala satisfies this need since it supports
functional programming style, which offers facilities for
defining different levels of expressions, functions, and
function compositions. Secondly, DeepDSL transforms
the DSL code to an intermediate representation (IR) and
performs multiple optimization steps with the IR. Scala
embedding allows the DeepDSL optimizations that con-
sume an input IR and produce the output IR to be im-
plemented in a clean and compact way, where both types
of IR are abstractions of computation steps – a technique
similar to the meta programming of lightweight modu-
lar staging [37] Finally, Scala is seamlessly integrated
with Java in both compilation and runtime stage. This
allows directly invocations of the Java-based Cuda wrap-

per code in the interpreter mode without any other de-
pendencies.

DeepDSL is embedded in Scala with its own complete
set of syntax (Figure 3), defined using Scalar classes
and methods, and operational semantics (Figure 4). Af-
ter evaluation, DeepDSL programs are de-sugared to a
form of abstract syntax tree (AST). Therefore DeepDSL
falls in the deep embedding category [16, 43]. Unlike
the shallow embedding DSL implementation, terms in
DeepDSL do not represent semantics (such as DL convo-
lution function), these terms instead are used to construct
an AST, which is later transformed for optimization and
traversed for evaluation.

Many problems can be represented in either a generic
or domain-specific way. A generic solution usually re-
quires less constraints and offers maximum flexibility
for its applicable domains. Contrarily, a domain spe-
cific design distills the jargons or dialects for some spe-
cific domain to provide some advantages for that domain
problems, such as ease of understanding and use, the
best possible performance, and quick development cycle,
while sacrificing the flexibility, adaptability, or generality
of the design (such as the domain-specific vs. domain-
agnostic UML models shown in [32]). While deep learn-
ing and the DL network are complicated in aspects such
as its deep system architecture, the sophisticated learn-
ing algorithms, and the difficult parameter tuning, the
fundamental DL building blocks such as network con-
struction, the execution workflow, and the related com-
putations are all suitable for abstractions and can be rep-
resented with a few carefully designed constructs (e.g.
Scalar, Tensor, and Tensor function) and their composi-
tion, assembly, and interaction. In addition, some low-
level executions, such as Cuda or Cudnn library calls can
also be abstracted to free the users from the complex and
yet error-prone details. A generic solution will not allow
us to handle DL specific problems with focused efforts
like what we can achieve with the domain specific de-
sign in DeepDSL. For example, it would be very diffi-
cult to apply the execution scheduling technique that we
employ in DeepDSL for memory optimization inherited
from the knowledge of execution dependencies without
the analysis of the computation orders of our domain-
specific constructs. While DeepDSL constructs, syntax,
and semantics are open for extensions such as the sup-
port for recurrent neural network, these building blocks
have been proved to be highly expressive as shown in
the experiments (Section 9) to support a wide range of
DNNs.



10.4 DSL on scientific computing with ten-
sors

A number of DSLs have emerged in recent years for sci-
entific computing applications such as TCE (Tensor Con-
traction Engine) [7], UFL (Unified Form Language) [3],
SPL [50] (DSL for signal processing).

TCE [7] is a high-level Mathematica-like DSL for im-
plementing scientific computation in areas such as quan-
tum chemistry, which involves the contractions of multi-
dimensional arrays (or tensors). The objective is to im-
prove the runtime and memory efficiency of tensor con-
tractions on parallel platforms.

The TCE compiler searches for an optimal implemen-
tation and generates FORTRAN code accordingly. TCE
performs a sequence of steps to achieve such goal. First,
algebraic transformations are used to reduce the num-
ber of operations. Second, loop fusion is conducted to
minimize the storage requirements. For the intermedi-
ate arrays that are allocated dynamically, TCE provides
an algorithm to search the optimized evaluation order.
TCE also provides support for re-computation for a re-
duction in storage requirements when the computation
fail to fit within the disk limits and optimize the com-
munication cost together with finding a fusion configura-
tion for minimizing storage when the target machine has
multi-processor. DeepDSL also performs tensor contrac-
tion operation by translating it to matrix product though
it is simpler compared with TCE, which optimizes multi-
ple contraction operations. The computation dependency
of TCE forms a tree that can have optimal schedule for
memory while the computation dependency of DeepDSL
forms a graph that is scheduled by heuristics.

UFL [3] provides a DSL to express variational state-
ments of partial differential equations (PDEs) in near-
mathematical notation. Instead of providing a problem
solving environment, UFL generates abstract represen-
tations of problems that can be used by form compil-
ers to create concrete code implementations in general
programming languages. As a general purpose DSL for
partial differential equations, UFL offers complete no-
tations for the arithmetic operations in terms of tensor.
UFL’s support of tensor and tensor algebra is similar to
DeepDSL in that both define tensors in terms of their
indices and related dimensions. UFL is solely a set of
abstractions that can be used to represent partial differen-
tiation equations or formulas (it relies on separate form
compilers to provide different concrete language bind-
ings), while DeepDSL not only abstract out the core deep
learning concepts but also provide complete support for
all the most important deep learning aspects, such as gra-
dient computation, optimization, and code generation.

11 Conclusion

We have designed and implemented DeepDSL for en-
coding deep learning networks to achieve training and
testing goals. This DSL is simple for the users to use
and modify, is portable for the DL code to run across
platforms, and has competitive runtime and memory ef-
ficiency.

DeepDSL generates Java source code. This provides
several advantages compared to other DL libraries. The
generated Java program is already optimized so that it
does not incur lengthy startup time of other libraries,
which must repeat the same preprocessing steps each
time a DL program is launched. Also, the generated Java
program has minimal dependencies and can run on all
major operation systems such as Windows, OS X, and
Linux, which make it far more portable than other DL li-
braries. Since it is compilation-based, DeepDSL can also
statically detect programming errors and analyze mem-
ory consumption so that users can determine whether a
DL network can be run on a platform before actually run
it. The generated Java program is easy to debug using
an IDE such as Eclipse and IntelliJ, where users can set
break points and inspect intermediate results, which is
very difficult for other DL libraries.

The development of DeepDSL also demonstrated the
utility of rule-based symbolic reduction in mathemati-
cal computation. The DeepDSL programs are encoded
in objects that represent mathematical abstractions. The
high-level optimization process, which includes gradi-
ent derivation, simplification, and vectorization, is en-
tirely based on rule-based symbolic reduction, which is
is easy to understand, implement, and enhance. The re-
sult of the high-level optimization remains a sequence
of abstract computation steps, which is further improved
upon by compilation-based optimization such as com-
mon subexpression elimination and by the low-level opti-
mization such as inlining and in-place computation. The
final result of optimization is a sequence of statements
that directly correspond to function calls of the underly-
ing libraries. The sequence of statements are scheduled
based on their dependencies to achieve better memory
efficiency before they are mapped to Java source code.

DeepDSL is evaluated on convolutional neural net-
works. As future directions, we plan to evaluate this ap-
proach on other types of neural networks such as gen-
erative adversary network, reinforcement learning net-
works, and recurrent neural networks. The static anal-
ysis of DeepDSL may also be used for supporting GPU
memory virtualization, where tensors can be temporarily
moved from GPU memory to the main memory when
they are not used and be copied back when they are
needed in later computation.
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