
Polymorphic Type Inference for Scripting
Languages with Object Extensions

Tian Zhao
University of Wisconsin – Milwaukee,

Milwaukee, Wisconsin, USA
tzhao@uwm.edu

Abstract
This paper presents a polymorphic type inference algorithm for a
small subset of JavaScript. The goal is to prevent accessing un-
defined members of objects. We define a type system that allows
explicit extension of objects through add operation and implicit ex-
tension through method calls. The type system also permits strong
updates and unrestricted extensions to new objects. The type infer-
ence algorithm is modular so that each function definition is only
analyzed once and larger programs can be checked incrementally.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages – program
analysis; F.3.3 [Logics and Meanings of Programs]: Studies of
Program Constructs – type structure

General Terms Languages, Theory, Verification

Keywords Type inference, static types, JavaScript, dynamic lan-
guages

1. Introduction
JavaScript is an object-based scripting languages widely used for
Web applications. As a dynamic language, JavaScript allows ob-
jects be modified at runtime for updating existing members, adding
new members, or deleting members. Functions can be added to ob-
jects to become methods. Object members can be replaced by val-
ues of different types. This dynamic nature can result in runtime
errors such as accessing an undefined object member or invoking
an object property that is not a function. Since JavaScript is dynam-
ically typed, there is no static approach to automatically determine
the type information of objects at each program point and runtime
type tests are often used to examine the properties of objects.

In JavaScript, objects may be created directly as object literals
or by invoking constructor functions through new operator. After
an object is created, it can be extended with new members. The
extension may be explicit through assignment. For example the
statements below extend empty object x with a new member of
number type.

var x = {};
x.m = 1;

[Copyright notice will appear here once ’preprint’ option is removed.]

If we write the initial type of x as [], then its type at line 2 becomes
[m : num], where [] represents the type of empty object and num
is the type of numbers. The extension may also be implicit through
function calls.

var x = {};
function f(y) {

y.m = 1;
}
f(x);
var z = x.m;

After the call to f, the type of x also has member m.
Because of this kind of extensions, an object may have different

sets of members during execution and a variable pointing to the
object should be assigned object types to reflect the correct set of
members at each program point. A type inference algorithm has to
statically track the members added to the object variable at different
parts of a program.

To address this problem, type inference algorithms [4, 12, 25]
were developed to statically track the members of objects. How-
ever, these type systems are rather restrictive in that they infer
monomorphic types and whole program analysis is needed for each
program. These type systems may also have difficulty in dealing
with cases such as polymorphic functions and container objects. A
more useful type inference algorithm needs to support both object
extensions and polymorphism.

Polymorphism promotes code reuse and is an essential part of
object-oriented programming. JavaScript functions exhibit para-
metric polymorphism when invoked with different types of argu-
ments. The arguments to a JavaScript function include an implicit
self pointer accessible via this variable. A function may be as-
signed as methods to different types of objects and if the func-
tion is invoked as a method, then the self pointer of the function
is bound to the receiver object of the call. It is too restrictive to as-
sign monomorphic type to a function since different arguments to
the function are forced to be have common super types.

For example, the constructor function F shown below can be
used to create different types of objects.

function F(x) {
this.left = x;

}
var a = new F(1);
var b = new F(true);

The type for F can be t → [left : t] so that the types of a and b
are [left : num] and [left : bool] respectively.

However, subtyping can complicate type inference. The func-
tion copy shown below requires an object with member left and
return the object after adding or updating a member right.

1 2011/10/23

function copy(x) {
x.right = x.left;
return x;

}
var a = new F(1);
var b = new F(1);
b.middle = 0;

var a1 = copy(a);
var b1 = copy(b);

It is not immediately clear how to assign a type to copy to support
polymorphism. By Anderson et al.’s design [4], we can assign a
type τ → τ ′ to the function copy, where

τ = [left : (num, •), right : (num, ◦)]
τ ′ = [left : (num, •), right : (num, •)]

and • labels definitely present members while ◦ labels potential
members of objects. The types of a and b must have potential
member right as well since they are subtypes of the parameter
type of copy. There are two problems with this approach. One is
that the return type of the constructor F is forced to have a potential
member right of num type, which is unnecessarily restrictive.
Another problem is that the statement

var c = b1.middle;

would not be typable even though it is safe. Recency type sys-
tem [12] may also have similar problem with this example as it
needs to assign a summary object type (that have a fixed set of
members) to the parameter of copy since it is not a precise object.

To address the above problems, we define a polymorphic,
constraint-based type inference algorithm for a small subset of
JavaScript with support for dynamic extension and update of ob-
ject members.

We can avoid the first problem by assigning a kind of extensive
object types called pro-type to new objects (e.g. a and b in previous
example) so that their types can be extended with new members
when necessary but not before that (e.g. by function call copy(a)
and copy(b)). This design is similar to the singleton object type in
recency type system though pro-types are only for local variables.

Specifically, we use two kinds of object types: pro-type and
obj-type. The pro-types are assigned to local variables that refer
to objects created in the local scope and we allow strong updates
(where members of an object can be replaced by values of different
types) and unrestricted extensions to the variables of pro-types. The
obj-types are assigned to other local variables, function parameters,
and object fields. A pro-type is uniquely associated with an object
while an obj-type may be related to multiple objects. A variable
of obj-type can also be extended though it may not have strong
updates. Our type system also keeps track of members added to
an object by implicit extension through function parameters and
self pointer. The latter is called self-inflicted extension [7] – the
extension that an object made to itself upon receiving a message.

For the second problem, our algorithm uses a generalized form
of types adopted from the recursively constrained (rc) types [8],
which was used for polymorphic type inference for an object-
oriented language. The rc types have the form of τ \ C, where
C is a set of type constraints, each of the form τ1 ≤ τ2. The rc type
is a generalization of recursive types and it can model a restricted
form of union and intersection type with multiple upper bounds and
lower bounds on the same type variable. The type that we infer for
the function copy is parameterized so that each application of copy
results in a new version of the type. As a result, the call copy(b)
returns an object with a member middle while copy(a) does not.

Our system has its limitations. We do not consider JavaScript
features such as accessing objects as associative arrays, function

prototypes, variadic functions, and eval function. Also, we do not
allow strong update of object types through function or method
calls. For example, the last line in the code fragment below is not
typable even though it will run correctly.

var d = new F(1);
d.right = true;
var d1 = copy(d);
var e = d1.right + 1;

That is, we cannot overwrite the boolean type of the right member
of d when it is assigned the integer value of its left member in
function copy. In fact, the type of the d1.right is inferred as the
super type of both num and bool so that d1.right + 1 is not
typable. We will consider these limitations in future work.

In summary, we present a type inference algorithm for a small
subset of JavaScript language that

1. infers polymorphic function types,

2. keeps track of object extensions through direct assignments and
function/method calls, and

3. allows strong updates and flexible extensions to new objects in
local scope.

In the rest of paper, we first present some motivating examples
in Section 2 and then we give an informal discussion of our ap-
proach in Section 3. Next, we formalize a type system on a lan-
guage that models some core features of JavaScript. We present the
syntax and typing rules in Section 4. We explain the type inference
algorithm and the simplification of the inferred types in Section 5.
The operational semantics and soundness proof of the type system
are in the appendix.

2. Motivating examples

1 function Point(x, y) {
2 this.x = x; this.y = y;
3 }
4 function Line(p1, p2) {
5 this.p1 = p1; this.p2 = p2;
6 }
7 function leftMost(z1, z2) {
8 var x1 = z1.getX(), x2 = z2.getX ();
9 var r;

10 if (x1 <= x2) r = z1; else r = z2;
11 return r;
12 }
13 function getX() { return this.x; }
14
15 function getLineX () {
16 var p1 = this.p1; p1.getX = getX;
17 var p2 = this.p2; p2.getX = getX;
18
19 /* return a point */
20 var p = leftMost(p1, p2);
21 return p.x;
22 }
23 p1 = new Point(1, 2);
24 p2 = new Point(3, 1);
25 line = new Line(p1, p2);
26
27 p2.getX = getX;
28 line.getX = getLineX;
29
30 /* return a point or line */
31 s = leftMost(line , p2);

Figure 1. Object extension and polymorphism

2 2011/10/23

Figure 1 is an example of object extension and polymorphism,
where Point and Line are constructor functions that return new
point and line objects respectively. The function leftMost takes
two geometry objects (either line or point) and return the one on
the left based on the left-most x-coordinate of the geometry. The
function assumes that the arguments have a getX method that
returns the left-most x-coordinate. Before calling the leftMost
function with a point or line object as argument, it is necessary
to add appropriate getX methods to the geometries. For example,
before the call leftMost(line, p2) on line 31, function getX is
added to the point object p2 (line 27) and getLineX is added to the
line object (line 28).

Notice that the call leftMost(line, p2) returns either a
point or a line object. However, in function getLineX , the func-
tion call leftMost(p1, p2) (line 20) returns a point object. The
statement at line 21 assumes the returned object is a point and read
its member x. This polymorphic use of function leftMost makes
it difficult to assign static types to the parameter and return types.
For example, we cannot assign a Point type or Line type to the pa-
rameters of leftMost since it accepts both kinds of argument. It is
possible that the function may take other kinds of argument such as
polygon. Parametric function type does not work in this case either.
If we assign variable types α1 and α2 to the function parameter z1
and z2 respectively, then the return type is neither α1 nor α2 but
an upper bound of the union type α1 ∨ α2.

1 function average(p1, p2) {
2 var x = (p1.x + p2.x)/2;
3 var y = (p1.y + p2.y)/2;
4
5 return new Point(x,y);
6 }
7 function Line(p1, p2) {
8 this.p1 = p1; p1.geom = this;
9 this.p2 = p2; p2.geom = this;

10
11 this.center = average(p1 , p2);
12 }
13
14 p1 = new Point(1, 2); p2 = new Point(3, 1);
15
16 /* implicit extension to p1 and p2 */
17 line = new Line(p1, p2);
18
19 /* p1 now has geom field */
20 g = p1.geom;
21
22 function center () {
23 var p1 = this.p1;
24 var p2 = this.p2;
25 return average(p1, p2);
26 }
27 line.center = center; /* strong update */
28
29 p = line.center ();

Figure 2. Implicit extension and strong update

JavaScript objects may be extended after being passed as argu-
ments to functions or as receivers of method calls. Figure 2 shows
such an example, where point objects passed to the Line construc-
tor are extended with a field geom that points to the line object (line
8 and 9). After call to the Line constructor, the point p1 has a field
geom and its access is allowed (line 20).

Figure 2 also includes an example of strong update. The Line
constructor adds a field center to each new line object, which is
the center point of the line. If a line’s end points may change, it
may be better to have a method to compute the center point based

on the current end points. To do this, we simply replace the center
member of the line object with a function center at line 27.
This is strong update since the new member is a function while
the existing member is an object.

3. Approach
In this section, we give an informal description of our type system
using the motivating examples.

3.1 Function types
In our design, we assume that a program consists of a sequence of
function declarations (including constructor functions) and a main
program (consists of a sequence of statements). For each function
of the form

function f(x){〈function body〉},
we infer a rc type

τ \ C,
where τ is the type of the function and C is a set of constraints that
constrain τ and other types related to τ .

The set C is formed through the type derivation of the state-
ments of the function body. After each statement is analyzed, C
may be added with more constraints. The set C must be consistent
after each statement is analyzed so that its closure does not contain
inconsistent constraints such as num ≤ bool. We do not directly
verify subtyping relation between types. Instead, to check whether
τ1 ≤ τ2, we add this constraint to the current constraint set C and
check if C ∪ {τ1 ≤ τ2} is consistent. One problem with this ap-
proach is that a large number of constraints may be generated for
a function while many of them are not needed after the function is
checked. To reduce the size of constraint set, we define simplifica-
tion rules to remove redundant constraints from C and only keep
those constraints related to the parameter types and return types of
the functions.

For the rest of the section, we will refer to C as the constraint
set of the current context.

To support parametric polymorphism, for each reference of a
function/constructor of the type τf \ Cf , we instantiate the type by
replacing the free variables in τf and Cf with fresh variables using
a renaming function Ψ and add ΨCf to C.

3.2 Object types
We have two kinds of object types: pro-type and obj-type. A pro-
type (denoted by meta variable ς) is uniquely associated with an
object such as the self object of a constructor function or a newly
instantiated object.

All pro-types are initially type variables. We use meta variable
β for the initial type of the self object of a constructor function
and use meta variable γ for the initial type of a new object. If a
variable y of type ς is explicitly extended through assignment such
as y.m = y′, we give y a new pro-type

ς ← (m, t),

where the constraint τ ≤ t is added to C and τ is the type of y′.
The type ς ← (m, t) has the meaning that ς is added a member m
of type t and if this member already exists in ς , then it is replaced.
This representation permits strong update.

In the Point function in Figure 1, the initial type of this
variable is a variable pro-type βp that represents empty object.
After line 2, the type of this becomes

ςp = (βp ← (x, t1))← (y, t2),

with the constraint set {tx ≤ t1, ty ≤ t2}, where tx, ty are
parameter types of the constructor. The rc type of Point is then

tx × ty → ςp \ {tx ≤ t1, ty ≤ t2}.

3 2011/10/23

We let the type constructor ← be left associative so that we can
write (βp ← (x, t1))← (y, t2) as βp ← (x, t1)← (y, t2).

If we instantiate a point object as below

var p = new Point(1,2);

then the type of p is γp with the constraints

{β′p ← (x, t′1)← (y, t′2) ≤ γp,
num ≤ t′x, t′x ≤ t′1, num ≤ t′y, t′y ≤ t′2}.

The type γp is a pro-type variable representing the initial type of
the new object p and the primed type variables are instances of the
free variables in the rc type of Point.

An obj-type may be related to multiple objects and is also
initially a type variable (denoted by meta variable t). We give
obj-types to function parameters, object members, and the local
variables that are not uniquely associated with an object. An object
of obj-type may be extended and we write the type of the extended
object as (t,M), where M is a meta variable representing the
names of members added to t. If a variable y of an obj-type t
is explicitly extended in y.m = y′, then the type of y becomes
(t, {m}), which means that m is a member added to t but the type
of m is not changed. Also, the constraints

{t ≤ [m− : t′], τ ≤ t′}

are added to C, where τ is the type of y′ and constraint of the form
t ≤ [m− :] is added for each write on obj-types.

3.3 Reading an object member
In general, we add constraints of the form

{τ ≤ [m+ : t],m ∈ τ},

for each read of a member m (including method call) on an object
of the type τ , where m ∈ τ is a special type of constraints
that check whether τ or its type lower bounds (if τ is a type
variable) have the member m. A constraint of the form m ∈ β
is immediately inconsistent since β represents an empty object.

For example, the rc type of the function getX in Figure 1 is

t→ tg \ {t ≤ [x+ : tg], x ∈ t},

where t is the type of this variable in getX. The constraints
{t ≤ [x+ : tg], x ∈ t} correspond to reading the member x on
this variable. Since t is a type variable, its lower bounds must
have the member x. Within the rc type of getX, t has no lower
bound but when getX is invoked on an object, the lower bounds of
t must have a member x.

Consider the code fragment

var p = new Point(1,2);
p.getX = getX;
var x = p.getX();

for p.getX = getX, our type system instantiates the type of getX
to t′ → t′g and add {t′ ≤ [x+ : t′g], x ∈ t′} to C. For p.getX(),
the type system adds some constraints to C so that its closure
includes a constraint γp ≤ t′, where γp is the type of p as defined
previously. By transitivity, β′ ← (x, t′1)← (y, t′2) is a lower bound
of t′ and it has the member x.

3.4 Polymorphism
To illustrate parametric polymorphism, consider the leftMost
function invoked on line 20 and line 31 of Figure 1. The type
of the function can be written as

κ = t1 × t2 → t \

{t1 ≤ [getX+ : t3], t2 ≤ [getX+ : t4],

getX ∈ t1, getX ∈ t2,
t3 ≤ t5 → t7, t4 ≤ t6 → t8,

t1 ≤ t5, t2 ≤ t6, t1 ≤ t, t2 ≤ t
t7 ≤ num, t8 ≤ num}.

Each time leftMost is called, we instantiate κ by renaming its free
variables t and t1 – t8 to some fresh variables.

To assign types for the statement var p = leftMost(p1, p2)
at line 20 (within the function getLineX), we instantiate κ to

t′1 × t′2 → t′ \ C′, where {t′1 ≤ t′, t′2 ≤ t′} ⊆ C′.
Assume the types of p1 and p2 are τ1 and τ2 respectively. Then

C′ ∪ {τ1 ≤ t′1, τ2 ≤ t′2} ⊆ C.
At line 21, the statement p.x adds a constraint x ∈ t′ and since τ1
and τ2 are lower bounds of t′, they need to have the member x. This
is satisfied since getLineX is used as a method of a line object so
that p1 and p2 are end points of the line.

To assign types for the statement s = leftMost(line, p2)
at line 31, we instantiate κ to

t′′1 × t′′2 → t′′ \ C′′, where {t′′1 ≤ t′′, t′′2 ≤ t′′} ⊆ C′′.
The types of line and p2 are the lower bounds of t′′, which is the
type of the variable s. Consequently, we cannot treat s as a point
or line. We can only access members in s that are defined in both
objects such as getX.

3.5 Implicit extension
Objects may be extended implicitly when they are passed as argu-
ments to function calls. As an example, consider the constructor
Line in Figure 2 that extends its two parameters with a field geom
that points to the line object being constructed. After a line object is
instantiated (line 17), the arguments p1 and p2 should have a new
field geom. To model this behavior, we write the type of Line as

(t1, {geom})× (t2, {geom})→ ς \

{ t1 ≤ [geom− : tg1],

t2 ≤ [geom− : tg2],

t1 ≤ tp1, t2 ≤ tp2,
ς1 ≤ tg1, ς2 ≤ tg2, . . . }

where
ς1 = β ← (p1, tp1),

ς2 = ς1 ← (p2, tp2),

ς = ς2 ← (center, t).
For clarity, the constraints related to the addition of the member
center on line 11 are omitted.

In general, a function type is written as

(t,M)× (t′,M ′)→ τ \ C
where M and M ′ represent the set of members extended through
the parameters. In this example, the extended member is geom. At
line 17, if the type of p1 is τ1 before the call, then its type becomes
(τ1, {geom}) after the call and accessing this member on p1 is
allowed (line 20).

3.6 Strong update
A variable of pro-type can receive strong update to replace an exist-
ing member with one of different type. In Figure 2, the assignment
line.center = center (line 27) replaces the existing center
(a point object) of a line object with a function. If the line object at
line 27 has a type ςl, then after the assignment, the type becomes

ςl ← (center, t), where τc ≤ t ∈ C,

4 2011/10/23

and τc is an instance of the type of the function center.

4. Formalization
In this section, we present a formalization of our type system. We
first explain the syntax and the typing rules. The type inference
algorithm is given in Section 5. The operational semantics and type
soundness proof are in the appendix.

4.1 Syntax
We select a small subset of the JavaScript language that includes
member select, member update/add, method calls, object creation,
and branch statement with syntax shown in Figure 3. We distin-
guish constructor function and regular function with the naming
convention that constructor function name starts with an upper case
letter. We do not include function calls since its behavior is similar
to that of method calls when the receiver object is empty. In fact,
regular function calls in JavaScript will substitute this pointer of
the called function with the global object [6].

P ::= Fni
i∈1..n s Program

Fn ::= function f(x){s; return y} function
| function F (x){s} constructor

s ::= statements
x = z assignment

| x = new F (y′) new object
| x = y.m member select
| x = y.m(y′) method call
| y.m = y′ member update/add
| s; s′ sequence
| if(x) {s} else {s′} if statement

y ::= x local variables
| this self reference

z ::= y
| f function identifier
| n number
| b boolean
| null null value

Figure 3. Syntax

The syntax of a function body consists of a sequence of state-
ments and a return statement. For simplicity, we write object cre-
ation. member select, and method call in the form of assignments
and each expression is assigned to a variable so that there is no
nested expressions in the statements. We omit the var declaration
of variables with the understanding that variables appearing within
a function are locally scoped. The body of a constructor function
has a sequence of statements but no return statement since each
time a constructor function is called through new operator, this
pointer of the function is given a new empty object and after the
body is executed, this object is returned.

The meta variable f ranges over the names of regular functions,
F ranges over the names of constructor functions, and m ranges
over member names. A program P consists of a one or more
function/constructor definitions and a main statement s.

4.2 Types

τ ::= ς pro-type
| (t,M)→ τ function type
| t type variable (obj-type)
| (t,M) extended type
| num | bool base type
| null null type

The meta variable τ ranges over type variables, function types,
extended types, pro-types, primitive types (num and bool), and null
type. A type variable t may be given to a variable that references
any kind of values and when the value is an object, then t is
considered an obj-type. An extended type (t,M) is assigned to an
obj-type variable after it is extended. In a function type

(t,M)→ τ,

we write (t,M) to represent the types of one or more parameters
and it is either (t1,M1) × (t2,M2) for a function (where t1 is
the type of the self pointer) or (t,M) for a constructor. In the
previous examples, we omit the member set M in the parameter
types whenever it is empty.

ς ::= β empty pro-type
| γ initial instance pro-type
| (ς,M) implicitly extended pro-type
| ς ← (m, t) explicitly extended pro-type
| (ς, ς ′) merged pro-type

The pro-types are given to variables that reference new objects.
The self pointer of a constructor is initially given variable type β
that represents empty object. A pro-type ς maybe extended directly
by assignment to ς ← (m, t) or indirectly through function/method
calls to (ς,M). If a variable has different pro-types ς and ς ′ in
the two branches of an if statement, then we merge the types into
(ς, ς ′). When a new object is instantiated, the variable that holds
the new object is given a pro-type γ. The closure of the current
constraint set will include a constraint of the form ς ≤ γ, where
ς is the return type of the constructor. We distinguish this type
from the empty pro-type β since a constraint of the form m ∈ β
is immediately inconsistent (which indicates that the member m is
not defined) while m ∈ γ is not. For example, given the statement
p1 = new Point(1, 2), we assign a type γ to p1, so that the
current constraint set includes ς ≤ γ, where ς = β ← (x, t1) ←
(y, t2) is an instance of the return type of Point.

The meta variable M represents a set of member names and
it ranges over set variable M, empty set, a singleton set {m},
the union or intersection of two sets. We use set variable M in
the typing rule for method calls to model the implicit extension of
method arguments.

M ::= M member set variable
| ∅
| {m}
| M ∪M ′
| M ∩M ′

A recursively constrained type κ has the form of τ \ C. where
C consists of constraints of the form:

τ ≤ [mψ : t], where ψ ∈ {+,−}
τ ≤ τ ′, where τ ′ 6= (t,M), τ ′ 6= null

m ∈ τ

M ⊆ M

In addition, if a function type τ ′ appears in τ ≤ τ ′, then τ ′ has the
form (t,M)→ t.

4.3 Constraint closure
The definition of a closed set of constraints is based on the closure
rules in Figure 4. The rules (C1) to (C5) check type constraints
while the rules (M1) to (M4) are for member constraints. We write
cls(C) to represent the closure of a constraint set C.

Rule (C1) and (C2) propagate type upper bound w that includes
base types, function types, and field types (of the form [mψ : t]

5 2011/10/23

(C1) {τ ≤ t, t ≤ w} ⊆ C ⇒ τ ≤ w ∈ C
(C2) (t,M) ≤ w ∈ C ⇒ t ≤ w ∈ C
(C3) (t,M)→ τ ≤ (t′,M)→ t ∈ C ⇒ {t′ ≤ t,M⊆M, τ ≤ t} ⊆ C

(C4) t ∈ fieldC(ς,m), {τ ≤ t, ς ≤ [m+ : t′]} ⊆ C ⇒ τ ≤ t′ ∈ C
(C5) ς ≤ t ∈ C, ς deriveC ς

′ ⇒ ς ′ ≤ t ∈ C

(M1) {m ∈ τ, τ ′ ≤ τ} ⊆ C ⇒ (m ∈ τ ′) ∈ C
(M2) {m ∈ (τ,M)} ⊆ C,m 6∈ UpperC(M) ⇒ (m ∈ τ) ∈ C
(M3) {m ∈ (ς1, ς2)} ⊆ C ⇒ {m ∈ ς1,m ∈ ς2} ⊆ C
(M4) {m ∈ ς ← (m′, t)} ⊆ C,m 6= m′ ⇒ (m ∈ ς) ∈ C

Figure 4. Definition of a closed constraint set C, where meta variable w ranges over num, bool, (t,M)→ τ , and [mψ : t], ψ ∈ {+,−}.

where ψ ∈ {+,−}). In rule (C3), we write t′ ≤ t for t′i ≤ ti and
M⊆M forMi ⊆Mi, where i ∈ {1, 2}.

Rule (C4) generates constraints for reading the member m of a
pro-type ς . The rule uses a function fieldC(ς,m) (defined below)
that returns all possible types of the member m in ς . If a pro-type ς
has the member m added indirectly through function/method calls,
then ς ≤ [m− : t] ∈ C for some type variable t. The function
fldC(ς,m) returns the types of member m directly added to ς .

fieldC(ς,m) = {t | ς ≤ [m− : t] ∈ C} ∪ fldC(ς,m)
fldC(ς ← (m, t),m) = {t}

fldC(ς ← (m′, t),m) = fldC(ς,m) where m′ 6= m
fldC((ς,M),m) = fldC(ς,m)
fldC((ς, ς ′),m) = fldC(ς,m) ∪ fldC(ς ′,m)

fldC(γ,m) = fldC(ς,m), where ς ≤ γ ∈ C
fldC(β,m) = ∅

Rule (C5) propagates the variable type upper bound of a pro-
type ς to all the pro-types derived from ς . The rule uses a relation
ς deriveC ς

′ defined for each ς ′ derived from ς:

ς ′ = (ς,M) | ς ← (m, t) | (ς,) | (, ς)
ς deriveC ς

′
ς ≤ γ ∈ C
ς deriveC γ

Note that this ς deriveC ς ′ relation is ambiguous since ς ′ can be
formed arbitrarily. However, for our purpose, we restrict ς ′ to the
pro-types that actually exist in the type environment.

To see why this rule is needed, consider the example below.
Suppose that y at line 4 has type γ, where {β ← (m, t1) ≤
γ, num ≤ t1} ⊆ C, and y1 has the type t, where γ ≤ t ∈ C.

1 function F() { this.m = 1; }
2 function f(x) { return x; }
3
4 y = new F();
5 y1 = f(y);
6 if (b) y.m = true;
7 z = y1.m

If b is true, then y has a new type γ ← (m, t2) after line 6,
where bool ≤ t2 ∈ C. After line 7, z has the type t′, where
t ≤ [m+ : t′] ∈ C.

The variable z at line 7 may be an integer or boolean. If we only
have γ ≤ t ∈ C, then Rule (C4) will only add num ≤ t′ to C
and allow z be used as a number. However, since Rule (C5) adds
γ ← (m, t2) ≤ t to C, by Rule (C4), we have bool ≤ t′ ∈ C,
which indicates that z may also be a boolean.

Rule (M1) to (M4) propagate member constraint based on sub-
typing relations and the structure of pro-types. If a constraint of the
form m ∈ β is added by the closure rules, then the constraint set

is inconsistent since β variable represents empty objects. In Rule
(M2), we use a function UpperC(M) to obtain the upper bound
of M . Since M may contain set variable M, which may be un-
bounded within a particular constraint set, we let Upper0

C(M) =
T for each M, where T represents the maximum set of member
names. The upper bound of each M is then calculated iteratively
until they converge.

Upperi+1
C (M ∪M ′) = UpperiC(M) ∪ UpperiC(M ′)

Upperi+1
C (M ∩M ′) = UpperiC(M) ∩ UpperiC(M ′)

UpperiC(∅) = ∅ UpperiC({m}) = {m}
Upperi+1

C (M) =
⋂
M⊆M∈C UpperiC(M)

UpperC(M) = UpperiC(M) if Upperi+1
C (M) = UpperiC(M) ∀M

By Rule (M2), if a member m is selected from a variable of type
(τ,M) and m is not in M , then m must be defined in τ , where τ
may be a pro-type or obj-type.

4.4 Constraint consistency
We define consistency rules to verify that a closed constraints set
does not contain immediate contradictions.

Constraints of the following form are immediately inconsistent:

1. τ ≤ τ ′ where

(a) τ is a base type and τ ′ is a different base type, or a function
type or a pro-type,

(b) τ is a function type and τ ′ is a base type or a pro-type,

(c) τ is a pro-type and τ ′ is a base type or a function type;

2. τ ≤ [mψ : t] where τ is a base type or function type;

3. null ≤ τ , where τ is a base type or function type;

4. m ∈ β.

A constraint setC is consistent if no constraint in its closure cls(C)
is immediately inconsistent.

The first two rules check constraints that are obviously incom-
patible. The third rule makes sure variables of base type or function
type cannot be null. It is possible that variables of object types have
null value. The last rule represents the error of reading undefined
member. If a member m is read on an object that has no definition
of m, then the closure rule will eventually generate a constraint of
the form m ∈ β, where β corresponds to the initial type of the self
pointer of the object’s constructor.

6 2011/10/23

∀i ∈ 1..n. Γ ` Fni Γ, ∅ ` s ‖ Γ′, C

Γ ` Fni∈1..n
i s ‖ Γ′, C

T-Prog

Γf , ∅ ` s ‖ Γ′, C Γ(f) = τf \ C
Γf = Γ[this 7→ a, x 7→ ax, a 7→ (t, ∅), ax 7→ (tx, ∅)]

τf = Γ′(a)× Γ′(ax)→ Γ′(Γ′(z))

Γ ` function f(x){s; return z} T-Fn

ΓF , ∅ ` s ‖ Γ′, C Γ(F) = τF \ C
ΓF = Γ[this 7→ a, x 7→ ax, a 7→ β, ax 7→ (t, ∅)]

τF = Γ′(ax)→ Γ′(a)

Γ ` function F (x){s} T-Ctr

Figure 5. Typing rules for program, constructor, and function

4.5 Type rules for functions and constructors
The typing rules for functions and constructors are given in Figure 5
and the rules for statements are in Figure 6. The typing rules use the
following notations.

A type environment Γ is a mapping from function/constructor
names to rc types and a mapping from variables to type aliases, and
from type aliases to types. We use type alias to track a variable’s
type until the variable is assigned with a different type. A type
alias a is uniquely mapped to a type while several variables may
be mapped to the same type alias.

For any name/variable/alias in the domain of Γ, we define

Γ = [. . . f 7→ κ . . .]

Γ(f) = κ

Γ = [. . . F 7→ κ . . .]

Γ(F) = κ

Γ = [. . . y 7→ a . . .]

Γ(y) = a

Γ = [. . . a 7→ τ . . .]

Γ(a) = τ

Given an initial environment Γ with the mapping of functions/-
constructors to their types, a program Fni∈1..n

i s is well-typed if
each of the function/constructor definition Fni is well-typed and
the main program s is well-typed.

The definition of a function f is well-typed given Γ if we can
construct a new environment from Γ for the function body so that
it is well-typed. In particular, the parameters are assigned extended
types with empty member set such as (t, ∅). After the function body
s is analyzed, the type of the parameter may be extended to (t,M).
We use (t,M) as the type of the parameter in the function type. M
is used to record the members added to the parameter in s. Though
type alias is not needed for the self pointer since it is immutable,
the use of type alias ax in Rule (T-Fn) allows us to keep track of the
extension to the parameter type tx in case it is assigned a different
value in the function body.

Given a type environment Γ and a constraint set C, the typing
rules for statements derive a possibly new environment Γ′ and
constraint set C′ for a statement s, written as Γ, C ` s ‖ Γ′, C′.
Each rule implicitly enforces the consistency of the constraint set
C′. In Rule (T-Fn), the constraint set derived from the body of a
function f is the one in the rc type of f defined in the initial type
environment (e.g. Γ(f) = τf \C). This does present a problem for
mutually recursive functions and we will address this in Section 5,
where we also show the steps to simplify the constraint set.

4.6 Type rules for statements
Typing rules for statements are shown in Figure 6, where we use
the following definition of τ ∪M to represent type extensions.

t ∪M ≡ (t,M)

(t,M) ∪M ′ ≡ (t,M ∪M ′)
ς ∪M ≡ (ς,M)

For an assignment x = v, Rule (T-Assn) finds the type of v through
Rule (T-Val) with the judgment Γ ` v : τ \ C.

For each appearance of a function f , we can instantiate the rc
type τ \ C of f by renaming the variables (including type and
set variables) in τ and C. For a recursively defined function, the
renaming of its type within itself is the identity function.

To illustrate the typing rules, we show how the function leftMost
in Figure 1 can be typed as follows:

Γ ` function leftMost(z1, z2){
x1 = z1.getX();

x2 = z2.getX();

b = x1 ≤ x2

if(b) {r = z1; } else {r = z2; }
return r;

}

where Γ = {leftMost 7→ κ} and

κ = t1 × t2 → t \

{t1 ≤ [getX+ : t3], t2 ≤ [getX+ : t4],

getX ∈ t1, getX ∈ t2,
t3 ≤ t5 → t7, t4 ≤ t6 → t8,

t1 ≤ t3, t2 ≤ t4, t7 ≤ num, t8 ≤ num,

t1 ≤ t, t2 ≤ t}.
By Rule (T-Fn), we construct the type environment Γ1 to check the
function body. so that

Γ1 = Γ ∪ {z1 7→ a1, a1 7→ t1, z2 7→ a2, a2 7→ t2}.
Here we omit the type for self pointer since it is never used and
we also omit the member set associated with parameter types since
they are not extended. From this environment and an empty con-
straint set, we can apply statement typing rules to each statement in
the function body sequentially to derive the final constraint set for
the function.

For the first statement, based on Rule (T-Invk), we have

Γ1, ∅ ` x1 = z1.getX() ‖ Γ2, C2, where

Γ2 = Γ1[x1 7→ a′1, a
′
1 7→ t7]

C2 = {t1 ≤ [getX+ : t3], getX ∈ t1,
t3 ≤ t5 → t7, t1 ≤ t5}.

In t5 → t7, the type t5 corresponds to the receiver type of the call
z1.getX() and the parameter type is omitted since getX has no
parameter.

Similarly, for the second statement, we have

Γ2, C2 ` x2 = z2.getX() ‖ Γ3, C3, where

Γ3 = Γ2[x2 7→ a′2, a
′
2 7→ t8]

C3 = C2 ∪ {t2 ≤ [getX+ : t4], getX ∈ t2,
t4 ≤ t6 → t8, t2 ≤ t6}.

For the third statement, we don’t have a rule to check compari-
son expression but it can be easily added:

Γ ` x ≤ y : bool \ {Γ(Γ(x)) ≤ num,Γ(Γ(y)) ≤ num}

7 2011/10/23

Γ ` n : num \ ∅ Γ ` b : bool \ ∅ Γ ` null : null \ ∅

f̂ = f or f̂ = F Γ(f̂) = τ \ C Ψ is a renaming of the type variables in C

Γ ` f̂ : Ψτ \ ΨC
T-Val

Γ ` v : τ \ C′

Γ, C ` x = v ‖ Γ[x 7→ a, a 7→ τ], C ∪ C′
T-Assn

Γ, C ` x = y ‖ Γ[x 7→ Γ(y)], C T-Assn2

Γ(Γ(y′)) = τ ′ Γ(y) = ay Γ(ay) = τ τ 6= ς C′ = C ∪ {τ ≤ [m− : t], τ ′ ≤ t}
Γ, C ` y.m = y′ ‖ Γ[ay 7→ τ ∪ {m}], C′

T-Upd

Γ(Γ(y′)) = τ ′ Γ(y) = ay Γ(ay) = ς ς ′ = ς ← (m, t)

Γ, C ` y.m = y′ ‖ Γ[ay 7→ ς ′], C ∪ {τ ′ ≤ t}
T-Upd2

Γ ` F : τF \ CF Γ(y) = ay Γ(ay) = τy C′ = {τF ≤ (t,M)→ γ, τy ≤ t}

Γ, C ` x = new F (y) ‖ Γ[x 7→ a, a 7→ γ, ay 7→ τy ∪M], C ∪ C′ ∪ CF
T-New

Γ(Γ(y)) = τ C′ = {τ ≤ [m+ : t],m ∈ τ}
Γ, C ` x = y.m ‖ Γ[x 7→ a, a 7→ t], C ∪ C′

T-Sel

Γ(y) = a Γ(y′) = a′ Γ(a) = τ Γ(a′) = τ ′ Γ′ = Γ[x 7→ ax, ax 7→ tx, a 7→ τ ∪M, a′ 7→ τ ′ ∪M′]
C′ = {τ ≤ [m+ : t], t ≤ (ty,M)× (t′y,M′)→ tx,m ∈ τ, τ ≤ ty, τ ′ ≤ t′y}

Γ, C ` x = y.m(y′) ‖ Γ′, C ∪ C′
T-Invk

Γ, C ` s ‖ Γ′, C′ Γ′, C′ ` s′ ‖ Γ′′, C′′

Γ, C ` s; s′ ‖ Γ′′, C′′
T-Seq

Γ, C ` s1 ‖ Γ1, C1 Γ, C ` s2 ‖ Γ2, C2 mrg(Γ1,Γ2,Γ
′, C′)

Γ, C ` if(x) {s1} else{s2} ‖ Γ′, C1 ∪ C2 ∪ C′ ∪ {Γ(Γ(x)) ≤ bool}
T-If

Figure 6. Type rules for statements, where for each judgment Γ, C ` s ‖ Γ′, C′, it is implicit that C′ is consistent.

Thus, we have

Γ3, C3 ` b = x1 ≤ x2 ‖ Γ4, C4, where

Γ4 = Γ3[b 7→ bool]

C4 = C3 ∪ {t7 ≤ num, t8 ≤ num}.
For the fourth statement, we apply Rule (T-If) so that

Γ4, C4 ` if(b) {r = z1; } else {r = z2; } ‖ Γ5, C5, where

Γ5 = Γ4[r 7→ ar, ar 7→ t]

C5 = C4 ∪ {t1 ≤ t, t2 ≤ t}.
The redundant constraint bool ≤ bool is omitted.

Rule (T-If) uses a predicate mrg(Γt,Γf ,Γ
′, C′) that merges the

type environments of both branches Γt and Γf into a new environ-
ment Γ′ and a constraint setC′. By Rule (T-Assn2), the assignment
in each branch of the if statement creates a new environment

Γt = Γ4[r 7→ at, at 7→ t1],

Γf = Γ4[r 7→ af , af 7→ t2].

When we merge the two environments, we get

Γ4[r 7→ ar, ar 7→ t] and {t1 ≤ t, t2 ≤ t}.
Below is the definition of the merge predicates. The merging

process includes the merging of mappings from variables to type
aliases and the merging of mappings from type aliases to types.

mrg(Γ,Γ,Γ, ∅)
a 6∈ dom(Γ2) mrg(Γ1,Γ2,Γ, C)

mrg((a 7→ τ,Γ1),Γ2,Γ, C)

mrg(Γ1,Γ2,Γ, C)

mrg(Γ2,Γ1,Γ, C)

y 6∈ dom(Γ2) mrg(Γ1,Γ2,Γ, C)

mrg((y 7→ a,Γ1),Γ2,Γ, C)

ς1 6= ς2 mrg(Γ1,Γ2,Γ, C)

mrg((a 7→ ς1,Γ1), (a 7→ ς2,Γ2), (a 7→ (ς1, ς2),Γ), C)

mrg(Γ1,Γ2,Γ, C)

mrg((a 7→ t,Γ1), (a 7→ (t,M),Γ2), (a 7→ t,Γ), C)

mrg(Γ1,Γ2,Γ, C) τ = (t,M1 ∩M2)

mrg((a 7→ (t,M1),Γ1), (a 7→ (t,M2),Γ2), (a 7→ τ,Γ), C)

Γ1(a1) = τ1 Γ2(a2) = τ2 a1 6= a2

mrg(Γ1,Γ2,Γ, C) C′ = C ∪ {τ1 ≤ t, τ2 ≤ t}
mrg((y 7→ a1,Γ1), (y 7→ a2,Γ2), (y 7→ a, a 7→ t,Γ), C′)

As another example, consider the constructor Line in Figure 2
with some simplification. We can derive its type as follows:

8 2011/10/23

Γ ` function Line(p1, p2){
this.p1 = p1;

p1.geom = this;

this.p2 = p2;

p2.geom = this;

}
where Γ = {Line 7→ κ},

κ = (t1, {geom})×(t2, {geom})→ ς2 \

{ t1 ≤ [geom− : tg1],

t2 ≤ [geom− : tg2],

t1 ≤ tp1, t2 ≤ tp2,
ς1 ≤ tg1, ς2 ≤ tg2 },

ς1 = β ← (p1, tp1), and ς2 = ς1 ← (p2, tp2).
By Rule (T-Ctr), we create a type environment Γ1 for the func-

tion body so that

Γ1 = Γ[this 7→ a, a 7→ β,

p1 7→ a1, a1 7→ (t1, ∅),
p2 7→ a2, a2 7→ (t2, ∅)].

Note the typing rule assumed one parameter but the same design
applies to multiple parameters.

For the first statement, we apply Rule (T-Upd2) so that

Γ1, ∅ ` this.p1 = p1 ‖ Γ2, C2 where

Γ2 = Γ1[a 7→ ς1],

C2 = {(t1, ∅) ≤ tp1}.
For simplicity, we replace (t1, ∅) ≤ tp1 with t1 ≤ tp1 so that
C2 = {t1 ≤ tp1} since they have the same effect.

For the second statement, we apply Rule (T-Upd) so that

Γ2, C2 ` p1.geom = this ‖ Γ3, C3 where

Γ3 = Γ2[a 7→ (t1, {geom})]
C3 = C2 ∪ {(t1, ∅) ≤ [geom− : tg1], ς1 ≤ tg1}.

Again, we replace (t1, ∅) ≤ [geom− : tg1] with t1 ≤ [geom− : tg1]
for simplicity.

The last two statements are typed the same way.
To see how Rule (T-New) is applied, consider the statement

line = new Line(p1, p2) (line 17 of Figure 2), where we as-
sume p1 and p2 are point objects of the type ςp1 and ςp2 respec-
tively. By Rule (T-New),

Γ, C ` line = new Line(p1, p2) ‖ Γ′, C′ where

Γ′ = Γ[line 7→ a, a 7→ γ,

p1 7→ (ςp1,M1), p2 7→ (ςp2,M2)],

C′ = C ∪ CLine∪
{τLine ≤ (t1,M1)× (t2,M2)→ γ, ςp1 ≤ t1, ςp2 ≤ t2},

and τLine \ CLine is an instance of the rc type of the Line constructor
from the judgment Γ ` Line : τLine \ CLine.

If we consider the closure of C′, then it contains the following
constraints Cp1 related to the type of p1 in Γ′:

{ςp1 ≤ t1, t1 ≤ t′1, t′1 ≤ [geom− : t′g1], ς
′
1 ≤ t′g1,M1 ⊆ {geom}}

The primed variables are unique instances of the variables in the rc
type κ of the Line function through renaming.

The typing of the statement g = p1.geom (line 20 of Figure 2)
generates the environment

Γ′′ = Γ′[g 7→ t]

and the constraints

C′′ = C′ ∪ {(ςp1,M1) ≤ [geom+ : t], geom ∈ (ςp1,M1)}.
We can see that C′′ is consistent since UpperC′′(M1) = {geom}
and the closure rule (M2) does not reduce the constraint geom ∈
(ςp1,M1) to geom ∈ ςp1. Also, by closure rule (C4), the closure
of C′′ has the constraint ς ′1 ≤ t. Note that ς ′1 is a pro-type of the
line object and the variable g is an alias of line. By closure rule
(C5), the closure of C′′ also contains ς ′2 ≤ t so that the type of the
variable g reflects the latest state of the line object.

In summary, our typing rules are flexible enough to handle
the polymorphic types and object extensions. In the appendix,
we give an operational semantics for our language and show that
if a program is typable then it will not access undefined object
members.

5. Type Inference
The typing rules for statements are sufficient for type inference
though the typing rules for functions and constructors do not con-
sider mutually recursive definitions. Also, we need to simplify the
type constraint set for each inferred rc type to reduce its size.

Each time a function is used, we instantiate its rc type by
Rule (T-Val), which introduces fresh variables to the constraint
set, but this can cause the constraint sets inferred from mutually
recursive functions to have unbounded size. To solve this problem,
we adopt a simple strategy that mutually recursive functions have
monomorphic types when they are used among themselves, while
they have polymorphic types elsewhere. When we apply Rule (T-
Val) for monomorphic function types, we can let the renaming Ψ
be identity function. While this may be restrictive for recursively
defined functions, as a future work, we hope to find evidence that
this is acceptable for practical programs.

Γ1 = ∅

`inf Fn
i∈

⋃
j∈1..k−1 Sj

i ‖ Γk if k > 1

Γk `inf Fni∈Sk
i ‖ Γk+1

`inf Fn
i∈

⋃
j∈1..k Sj

i ‖ Γk+1

I-Prog

∀i ∈ Sk. f̂i is the name of Fni
Γk[f̂i 7→ t

i∈Sk
i] `inf Fni : τi \ Ci

C =
⋃
i Ci C′ = C[τi/t

i∈Sk
i] C′ is consistent

Γk+1 = Γk[f̂i 7→ τi \ reach+
C′(τi)

i∈Sk]

Γk `inf Fni∈Sk
i ‖ Γk+1

I-Prog2

Γ, ∅ ` s ‖ Γ′, C

Γ = Γf [this 7→ a, x 7→ ax,

a 7→ (t, ∅), ax 7→ (tx, ∅)]
τf = Γ′(a)× Γ′(ax)→ Γ′(Γ′(z))

Γf `inf function f(x){s; return z} : τf \ C
I-Fn

Γ, ∅ ` s ‖ Γ′, C

Γ = ΓF [this 7→ a, x 7→ ax, a 7→ β, ax 7→ (t, ∅)]
τF = Γ′(ax)→ Γ′(a)

ΓF `inf function F (x){s} : τF \ C
I-Ctr

Figure 7. Inference rules for functions

The inference rules for functions and constructors are shown in
Figure 7. Informally, the type inference algorithm has three steps:

9 2011/10/23

1. Given a program Fni∈1..n
i ; s, create a dependency graph

(V,E) where V = {i | i ∈ 1..n} and (i, j) ∈ E if Fni
depends on Fnj . Find the strongly connected components Sk,
k ∈ 1..K of the graph so that if Sj depends on Si then j > i.

2. Let Γ1 be empty set. For k > 1, assume we have inferred types
for each definition in Sj where j = 1..k − 1 to have Γk.
For each Sk, apply inference rules to each function/constructor
Fni where i ∈ Sk so that Γk `inf Fni : τi \ Ci (Rule (I-
Prog2) in Figure 7), where Γi maps the function/constructor
in Sj , j ∈ 1..k − 1 to inferred types and maps each Fni
in Sk to an unconstrained type variable ti. The type inference
rules for statements are the same as typing rules for statements
with the following additions to extract the variable type of
function/constructor in Sk.

Γ(f) = t

Γ ` f : t

Γ(F) = t

Γ ` F : t

After obtaining the type constraints Ci, we check the consis-
tency of C =

⋃
i∈Sk

Ci and simplify the type constraints
for each function/constructor so that Fni has the type of
τi \ reach+

C′(τi), where C′ is C with each type variable ti
of function/constructor in Sk replaced by its inferred type τi.
The definition of reach+

C(τ) is shown in Figure 8.

3. After the types of all functions and constructors are inferred, we
obtain a type environment ΓK and then check the main program
s with ΓK , ∅ ` s ‖ Γ, C, where C is consistent.

Each time a function of the type τf \ Cf is used in a context
with the constraint set C, we add Cf to C. However, not all
constraints in Cf is needed since we are only interested in those
that are related to the type τf . Specifically, τf may only appear in
a constraint of the form τf ≤ τ in C (Rule (T-Upd), (T-New), and
(T-Invk)). Thus, we define reach+

Cf
(τf) to select the constraints in

Cf that are relevant to the closure of C related to τf ≤ τ .
Informally, reach+

C(τ) finds type constraints related to the lower
bounds of τ in C, while reach−C(τ) selects constraints related to
the upper bounds. Redundant constraints such as ς ← (m, t) ≤
[m+ : t′] are not included since they can be reduced to more basic
constraints after closure operations. reach+

C(ς) keeps constraints
in C related to ς itself. reach+

C(M) includes constraints of the
form m ∈ (τ,M) in C whereM affects the upper bound of M .
reach−C(M) has constraints in C related to the upper bound of M .

The simplification of the rc types does not affect the functions
within a strong connected component since they have monomor-
phic types among themselves and their constraints are pooled to-
gether to check consistency (Rule (I-Prog2)). When the functions
are used in other context, we need to make sure the simplification
does not remove necessary constraints. That is, we want to show
that if

Γ[. . . f 7→ τf \ reach+
Cf

(τf) . . .], C ` s ‖ Γ′, C′,

then
Γ[. . . f 7→ τf \ Cf . . .], C ` s ‖ Γ′′, C′′,

where C′ and C′′ are consistent. Since each time f is used, its type
is instantiated by a renaming Ψ, the resulting constraint set ΨCf
has no overlap with C. When we add ΨCf to C, they have no
interaction until a constraint of the form Ψτf ≤ τ is added by the
statement typing rules. We need to verify that if

Ψreach+
Cf

(τf) ∪ {Ψτf ≤ τ} ∪ C

is consistent, then so is

ΨCf ∪ {Ψτf ≤ τ} ∪ C.

Since Ψ only changes the names of variables, Ψreach+
Cf

(τf) =
reach+

ΨCf
(Ψτf). Thus, we need the following lemma.

Lemma 5.1. AssumeCf andC are consistent and they do not have
variables in common. Also, the variables in τ do not appear in Cf .
If C ∪ {τf ≤ τ} ∪ reach+

Cf
(τf) is consistent, then C ∪ {τf ≤

τ} ∪ Cf is also consistent.

Let C′ = C ∪ {τf ≤ τ} ∪ Cf and C′′ = C ∪ {τf ≤
τ} ∪ reach+

Cf
(τf). The proof is to show that cls(C′) ⊆ cls(C′′) ∪

cls(Cf).
Since simplification preserves the typability of functions, we

can conclude that a program is typable if we can infer its types.

Theorem 5.2. If `inf Fnii∈1..n ‖ ΓK and ΓK , ∅ ` s ‖ Γ′K , C,
then ∃Γ such that Γ ` Fnii∈1..n and Γ, ∅ ` s ‖ Γ′, C′.

6. Related work
Type inference and analysis for scripting languages Anderson
et al. [4] developed a type inference system for a small subset of
JavaScript that supports explicit member extensions on objects and
their type system ensures that the new members may only be ac-
cessed after the extensions. Their algorithm only infers monomor-
phic types with explicit member extension while we allow paramet-
ric polymorphism, implicit object extensions, and strong updates
and unrestricted extensions to new objects.

Recency types of Heidegger and Thiemann [12] have the sim-
ilar goal of preventing the access of undefined members through
type-based analysis. Their approach uses two kinds of object types:
singleton type and summary type, where each singleton type is as-
sociated with an abstract location and it has to be demoted to a
summary type when the next object is allocated at the same loca-
tion. Objects of singleton types can receive strong updates and ex-
tensions while objects of summary types are fixed. In comparison
to our work, recency type system allows singleton types for object
members and function parameters. However, it does not support
parametric polymorphism and singleton type objects can no longer
be extended after they are assigned to variables of summary types.
Pro-type objects can still be extended even if they have aliases of
obj-types. Also, in their formalism, abstract locations are assigned
to new expressions that return empty objects. This may be restric-
tive for modeling constructor functions since only the most recent
object created from the constructor can have singleton type.

We have previously developed a type inference algorithm for
a subset of JavaScript with implicit object extensions [25]. That
algorithm also uses two kinds of object types: singleton type that
allows strong update and arbitrary extensions and obj-type with
limited extensions. The main difference is that it does not support
parametric polymorphism.

Jensen et al. [13] have implemented a practical analyzer to de-
tect possible runtime errors of JavaScript program. Their approach
is based on abstract interpretation and uses recency information.
The analyzer can report the absence of errors based on some inputs
but it does not infer types. Earlier work of Thiemann [22] proposed
a type system for a subset of JavaScript language to detect conver-
sion errors of JavaScript values. The type system models automatic
conversions in JavaScript but it does not model recursive or flow
sensitive types.

Guha et al. [11] developed a type-checker for JavaScript that
combines typing and flow analysis to support the use of local
control and state to reason informally about types. Their system
uses tags to identify primitives, functions, and locations. They use
flow analysis to insert appropriate tag checks at each program
point and then apply flow-insensitive type-checker to verify the
correctness. They do not support objects or recursive types.

10 2011/10/23

reach−C(t) =
⋃

t≤w∈cls(C)

reach−C(w) ∪ {t ≤ w} ∪
⋃

(m∈t)∈cls(C)

{m ∈ t}

reach+
C(t) =

⋃
τ≤t∈cls(C)

reach+
C(τ) ∪ {τ ≤ t}

reach−C([m+ : t]) = reach−C(t) reach−C([m− : t]) = reach+
C(t)

reach−C((t,M)→ τ) = reach−C(τ) ∪
⋃
i

(reach+
C(ti) ∪ reach+

C(Mi))

reach+
C((t,M)→ τ) = reach+

C(τ) ∪
⋃
i

(reach−C(ti) ∪ reach−C(Mi))

reach−C(num) = reach−C(bool) = reach−C(null) = ∅
reach+

C(num) = reach+
C(bool) = reach+

C(null) = ∅

reach+
C((t,M)) = reach+

C(t)

reach+
C(ς) = reachC(ς) ∪

⋃
ς≤[m−:t]∈cls(C)

(reach+
C(t) ∪ {ς ≤ [m− : t]})

reachC((ς,M)) = reachC(ς)

reachC((ς1, ς2)) = reachC(ς1) ∪ reachC(ς2)

reachC(ς ← (m, t)) = reachC(ς) ∪ reach+
C(t)

reachC(γ) = reachC(ς), ς ≤ γ ∈ cls(C) reachC(β) = ∅

reach−C(M) =
⋃

M∈RC(M),M⊆M′∈cls(C)

{M ⊆M ′}

reach+
C(M) =

⋃
M∈RC(M),(m∈(τ,M))∈cls(C)

{m ∈ (τ,M)}

RC({m}) = RC(∅) = ∅
RC(M ∪M ′) = RC(M ∩M ′) = RC(M) ∪RC(M ′)

RC(M) = {M} ∪
⋃

M⊆M∈cls(C)

RC(M)

Figure 8. Constraint simplification

Typed Scheme [23] is an explicitly typed extension of Scheme
language. The extension introduced a notion of occurrence typing
to account for type tests and type predicates so that the control flow
information of the program can be used to assign subtypes of a
parameter to distinct occurrences.

DRuby [9, 10] is a tool to infer types for Ruby, which is a
class-based scripting language. DRuby includes a type system with
features such as union, intersection types, object types, self-type,
parametric polymorphism, and tuple types. Their type inference is
also a constraint-based analysis.

Type inference for class and object-based languages There are
a number of studies on type inference for class-based languages.
Palsberg et al. [14] have developed a type inference algorithm based
on ideas of flow analysis for object-oriented programs with inher-
itance, assignments, and late binding. The purpose is to guarantee
all messages are understood while allowing polymorphic methods.
The algorithm handles late binding with conditional constraints and
solves the constraints by least fixed-point derivation. Similar algo-
rithm was applied to object-based language SELF [3] that features
objects with dynamic inheritance. Plevyak and Chien [18] extended
this flow-based approach for better precision via an incremental
algorithm. Further enhancement on precision and efficiency were
made by Agesen in his Cartesian Product Algorithm [2], which was
applied to type inference for Python programs to improve compiled
code [20].

The rc type used in this work is adopted from the design of
Eifrig et al. [8], who developed a polymorphic, constraint-based
type inference algorithm for a class-based language with polymor-
phic types. Their goal was to mitigate the trade-off between inheri-
tance and subtyping. The rc types are also used in a type inference
algorithm for Java [24] to verify the correctness of downcasts. Their
inference algorithm extends Agesen’s Cartesian Product Algorithm
with the ability to analyze data polymorphic programs. In compari-
son, their algorithms are for class-based languages while this work
applies to object-based languages with dynamic extensions.

As for type inference for object-based languages, Palsberg de-
veloped efficient type inference algorithms [15] with recursive
types and subtyping for Abadi Cardelli object calculus [1], which
has method override and subsumption but not object extension.
Similar algorithms were developed for inferring object types for an
object calculus with covariant read-only fields [17] and supporting
record concatenation [16].

Type inference for dynamically typed languages is not scalable
to very large programs. Spoon and Shivers [21] have developed
a type inference algorithm that trades precision for speed using
a demand-driven approach, which solves user provided goals by
possibly generating more subgoals. They manage the number of
active goals with a subgoal pruning technique, which is to provide
a trivially correct answer to a goal to avoid having further subgoals.
The balance between precision and scalability may be achieved by
choosing pruning thresholds.

11 2011/10/23

Type systems for languages with object extensions Also related
is the work of Gianantonio et al. [7] on lambda calculus of objects
with self-inflicted extension. They separate the members of an
object type into two parts: interface part and reservation part. After
an extension, the extended member moves from reservation part
to the interface part. They also distinguish two kinds of object
types: pro-type and obj-type. A pro-type’s reservation part may be
extended but no subtyping is allowed on pro-types. A pro-type may
be promoted to obj-type which allows covariant subtyping but obj-
types’ reservation parts may not be extended. Our pro-type objects
are similar to theirs except that our pro-type objects do not lose
the ability of having strong updates even after it is assigned to
parameters or fields of obj-type.

Bono and Fisher [5] proposed an imperative, first-order calculus
with object extensions, which also distinguishes extensible pro-
types without subtyping from sealed obj-types that allow width
and depth subtyping. Their objective is to show that Java-style
classes and mixins can be encoded in their calculus through object
extensions and encapsulation.

7. Conclusion
We have presented a polymorphic constraint-based type inference
algorithm for a small subset of JavaScript. The goal is to pre-
vent accessing an object’s member before it is defined. The type
system supports explicit and implicit extension to objects and al-
low strong updates to new objects. Our type inference algorithm
is modular so that large programs can be checked incrementally.
The inferred rc-types can be simplified so that their constraint
sets do not grow with the size of the program. We have imple-
mented a prototype for checking simple JavaScript programs based
on the presented algorithm and the source code is available at
http://guangzhou.cs.uwm.edu/javascript.

Our primary focus is to keep track of member addition/update
to objects during and after object initialization, which can be use-
ful for some programs that exhibit this behavior [19]. However,
our system is lack of many important features found in real world
JavaScript programs such as prototypes, variadic functions, eval
function, member deletion, runtime type tests, and objects as as-
sociative arrays. For future work, we would like to investigate the
addition of prototypes and runtime type tests.

References
[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag New

York, Inc., Secaucus, NJ, USA, 1996.

[2] O. Agesen. The Cartesian Product Algorithm: Simple and Pre-
cise Type Inference Of Parametric Polymorphism. In Proceedings
of the 9th European Conference on Object-Oriented Programming
(ECOOP’95), pages 2–26, 1995.

[3] O. Agesen, J. Palsberg, and M. I. Schwartzbach. Type Inference of
SELF. In Proceedings of the 7th European Conference on Object-
Oriented Programming (ECOOP’93), pages 247–267, 1993.

[4] C. Anderson, S. Drossopoulou, and P. Giannini. Towards Type Infer-
ence for JavaScript. In 19th European Conference on Object-Oriented
Programming (ECOOP’05), pages 428–452, July 2005.

[5] V. Bono and K. Fisher. An Imperative, First-Order Calculus with Ob-
ject Extension. In the 12th European Conference on Object-Oriented
Programming (ECOOP’98), pages 462–497, 1998.

[6] D. Crockford. JavaScript: The Good Parts. O’Reilly Media, 2008.

[7] P. Di Gianantonio, F. Honsell, and L. Liquori. A Lambda Calcu-
lus of Objects With Self-Inflicted Extension. In Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA’98),
pages 166–178, 1998.

[8] J. Eifrig, S. Smith, and V. Trifonov. Sound Polymorphic Type Infer-
ence for Objects. SIGPLAN Not., 30(10):169–184, 1995.

[9] M. Furr, J.-h. D. An, and J. S. Foster. Profile guided static typing
for dynamic scripting languages. In Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA’09), 2009.

[10] M. Furr, J.-h. D. An, J. S. Foster, and M. Hicks. Static type inference
for Ruby. In Proceedings of the 2009 ACM symposium on Applied
Computing (SAC’09), pages 1859–1866, 2009.

[11] A. Guha, C. Saftoiu, and S. Krishnamurthi. Typing local control
and state using flow analysis. In Proceedings of the 20th European
conference on Programming languages and systems, pages 256–275,
2011.

[12] P. Heidegger and P. Thiemann. Recency Types for Analyzing Scripting
Languages. In Proceedings of the 24th European Conference on
Object-Oriented Programming (ECOOP’10),, pages 200–224, 2010.

[13] S. H. Jensen, A. Møller, and P. Thiemann. Type Analysis for
JavaScript. In 16th International Static Analysis Symposium (SAS’09),
August 2009.

[14] N. Oxhøj, J. Palsberg, and M. I. Schwartzbach. Making Type Inference
Practical. In Proceedings of the European Conference on Object-
Oriented Programming (ECOOP’92), pages 329–349, 1992.

[15] J. Palsberg. Efficient Inference of Object Types. Inf. Comput., 123(2):
198–209, 1995.

[16] J. Palsberg and T. Zhao. Type Inference for Record Concatenation and
Subtyping. Inf. Comput., 189(1):54–86, 2004.

[17] J. Palsberg, T. Zhao, and T. Jim. Automatic discovery of covariant
read-only fields. ACM Trans. Program. Lang. Syst., 27(1):126–162,
2005.

[18] J. Plevyak and A. A. Chien. Precise Concrete Type Inference for
Object-Oriented Languages. In Proceedings of the 9th annual con-
ference on Object-oriented programming systems, language, and ap-
plications (OOPSLA’94), pages 324–340, 1994.

[19] G. Richards, S. Lesbrene, B. Burg, and J. Vitek. An Analysis of
the Dynamic Behavior of JavaScript Programs. In Proceedings of
the ACM Programming Language Design and Implementation Con-
ference (PLDI), June 2010.

[20] M. Salib. Faster than C: Static Type Inference with Starkiller. In in
PyCon Proceedings, Washington DC, pages 2–26, 2004.

[21] S. A. Spoon and O. Shivers. Demand-Driven Type Inference with
Subgoal Pruning: Trading Precision for Scalability. In Proceedings
of the 18th European Conference on Object-Oriented Programming,
(ECOOP’04), pages 51–74, 2004.

[22] P. Thiemann. Towards a Type System for Analyzing JavaScript Pro-
grams. In 14th European Symposium on Programming (ESOP’05),
pages 408–422, 2005.

[23] S. Tobin-Hochstadt and M. Felleisen. The design and implementation
of typed scheme. In Proceedings of the 35th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL
’08, pages 395–406, 2008.

[24] T. Wang and S. F. Smith. Precise Constraint-Based Type Inference
for Java. In Proceedings of the 15th European Conference on Object-
Oriented Programming (ECOOP’01), pages 99–117, 2001.

[25] T. Zhao. Type inference for scripting languages with implicit exten-
sion. In International Workshop on Foundations of Object-Oriented
Languages, 2010.

12 2011/10/23

A. Semantics and Type Soundness
A.1 Operational semantics
We define a big-step semantics for our language in Figure 9. First,
we give a few definitions used in the semantics.

A heap H is a mapping from object labels ι to object values o,
which maps member names to values. A value v is either an object
label, a function name, a primitive value, or null.

v ::= ι | f | n | b | null
o ::= {mi 7→ vi

i∈1..n}
H ::= {ιi 7→ oi

i∈1..n′}

We can extract the object value from the heap through its label.

H = {. . . ι 7→ o . . .}
H(ι) = o

Similarly, we can select a member from an object value through
member name if the member is defined in the object.

o = {. . .m 7→ v . . .}
o(m) = v

Otherwise, o(m) = undef, which says m is undefined in o. Note
that undef is not the undefined property in JavaScript.

We use the symbol χ to represent a stack that maps local vari-
ables to to their values and maps a special variable FT to the the
declarations of functions and constructors.

χ ::= {yi 7→ vi
i∈1..n,FT 7→ Fnj∈1..n′

j }

We can find the value of a name y from the stack if it is in the
domain of the stack.

χ = {. . . y 7→ v . . .}
χ(y) = v

If y is not defined in the domain of χ, then χ(y) = undef.
Moreover, lookup(f, Fni∈1..n

i) = Fnj if Fnj is the declaration
of the function f and lookup(F, Fni∈1..n

i) = Fnj if Fnj is the
declaration of the constructor F , where j ∈ 1..n.

The reduction of a statement is written in form of H,χ, s ;

H ′, χ′, which means that the execution of a statement s given
the configuration of a heap H and a stack χ results in a new
configuration H ′, χ′.

The reduction rules are mostly straightforward and they do not
consider runtime errors, which will be defined next. A statement s
can write to a variable x not defined in χ and after the execution
of s, χ is extended with the definition of x. The reduction of if
statement uses a predicate trim to remove variables that are not
defined in both branches.

∀i = 1, 2. χ′i = {y 7→ χi(y) | y ∈ dom(χ1) ∩ dom(χ2)}
trim(χ1, χ2, χ

′
1, χ
′
2)

A.1.1 Runtime errors
Since big step semantics cannot distinguish a program stuck with
runtime error from divergence, we define rules to propagate run-
time errors during the computation. The first type of error is due to
accessing an undefined member of an object or invoking a object
property that is not a function. We use a special configuration error
to denote the result of the computation as shown in Figure 10. We
will show that a well-typed program will not result in error. The
second type of error is due to deferencing a null pointer, which is
represented by a special configuration nullPtrEx as shown in Fig-
ure 11. We tolerate this type of error.

P = Fni∈1..n
i s χ′ = {FT 7→ Fni∈1..n

i }
∅, χ′, s; H,χ

∅, ∅, P ; H,χ
R-Prog

lookup(F, χ(FT)) = function F (xp){s}
χ′ = {this 7→ ι, xp 7→ χ(y),FT 7→ χ(FT)}
ι 6∈ dom(H) H[ι 7→ { }], χ′, s; H ′, χ′′

H,χ, x = new F (y) ; H ′, χ[x 7→ ι]
R-New

H(χ(y))(m) = v

H, χ, x = y.m; H,χ[x 7→ v]
R-Sel

H(χ(y))(m) = f

lookup(f, χ(FT)) = function f(xp){s; return y′′; }
χ′ = {this 7→ χ(y), xp 7→ χ(y′),FT 7→ χ(FT)}

H,χ′, s; H ′, χ′′

H,χ, x = y.m(y′) ; H ′, χ[x 7→ χ′′(y′′)]
R-Invk

H(χ(y)) = o H ′ = H(χ(y) 7→ o[m 7→ χ(y′)])

H,χ, y.m = y′ ; H ′, χ
R-Upd

H,χ, x = y ; H,χ[x 7→ χ(y)] R-Asn

z = n | b | f
H, χ, x = z ; H,χ[x 7→ z]

R-Asn2

H,χ, s; H ′, χ′ H ′, χ′, s′ ; H ′′, χ′′

H,χ, s; s′ ; H ′′, χ′′
R-Seq

H,χ, s1 ; H1, χ1 H,χ, s2 ; H2, χ2

(χ(x) = true ∧ i = 1) ∨ (χ(x) = false ∧ i = 2)

trim(χ1, χ2, χ
′
1, χ
′
2)

H,χ, if(x){s1} else{s2}; Hi, χ
′
i

R-If

Figure 9. Operational semantics where the reduction rules of state-
ments assume an implicit function table FT that maps each func-
tion/constructor name to its declaration.

A.2 Type soundness
For type soundness proof, we define an invariant that holds in each
reduction step. The invariant is written as Σ,Γ, C ` H,χ, which
means that the heap H and stack χ are well-formed under the
environments Σ and Γ, and constraint set C, where Σ maps object
labels to their types: Σ = {ιi 7→ ςi

i∈1..n}.
The judgment Σ,Γ, H,C ` v : τ denotes that the value v is

well-typed with the type τ . Here we use a function LowerC(τ) to
retrieve the set of lower bound types of τ .

LowerC(t) =
⋃

{τ≤t∈cls(C)}

LowerC(τ)

τ 6= t ∧ τ 6= (t,M)

LowerC(τ) = {τ} LowerC((t,M)) = LowerC(t)

Given a constraint set C, a value is well-typed with the type τ
if the lower bounds of τ in C includes the actual type of the value.

num ∈ LowerC(τ)

Σ,Γ, H,C ` n : τ

bool ∈ LowerC(τ)

Σ,Γ, H,C ` b : τ

null ∈ LowerC(τ)

Σ,Γ, H,C ` null : τ

13 2011/10/23

H(χ(y))(m) = undef

H,χ, x = y.m; error

H,χ, s; error or (H,χ, s; H ′, χ′ ∧ H ′, χ′, s′ ; error)

H,χ, s; s′ ; error

H(χ(y))(m) = undef or
H(χ(y))(m) = f ∧ f 6∈ dom(χ) or
χ(f) = function f(xp){s; return y′′; }

χ′ = {this 7→ χ(y), xp 7→ χ(y′)} H,χ′, s; error

H,χ, x = y.mj(y
′) ; error

F 6∈ dom(χ) or
χ(F) = function F (xp){s} ι 6∈ dom(H) H ′ = H[ι 7→ { }]

χ′ = {this 7→ ι, xp 7→ χ(y)} H ′, χ′, s; error

H,χ, x = new F (y) ; error

Figure 10. Error of accessing undefined members or functions

χ(y) = null

H,χ, x = y.m; nullPtrEx

χ(y) = null

H,χ, y.m = y′ ; nullPtrEx

H,χ, s; nullPtrEx or
H,χ, s; H ′, χ′ H ′, χ′, s′ ; nullPtrEx

H,χ, s; s′ ; nullPtrEx

χ(y) = null or
H(χ(y))(m) = f χ(f) = function f(xp){s; return y′′; }
χ′ = {this 7→ χ(y), xp 7→ χ(y′)} H,χ′, s; nullPtrEx

H,χ, x = y.mj(y
′) ; nullPtrEx

ι 6∈ dom(H) H ′ = H[ι 7→ { }] χ(F) = function F (xp){s}
χ′ = {this 7→ ι, xp 7→ χ(y)} H ′, χ′, s; nullPtrEx

H,χ, x = new F (y) ; nullPtrEx

Figure 11. Null pointer exception

Given a constraint set C, a function value is well-typed with
the type τ , if after renaming of variables, the constraint set of the
function value is included in C and the renamed function type is a
lower bound of τ in C.

Γ(f) = τf \ Cf Ψ is a renaming of the variables in Cf
Ψτf ∈ LowerC(τ) ΨCf ⊆ C

Σ,Γ, H,C ` f : τ

Recall that a constraint m ∈ τ represents the reading of m on τ
and this access is safe given a constraint set C if C ∪ {m ∈ τ} is
consistent. We use the judgement C ` m ∈ τ to represent this.

C ∪ {m ∈ τ} is consistent
C ` m ∈ τ

The environment Σ is only used in the proof of type soundness
and we make sure that it maps each object label ι to the most current
pro-type associated with ι. For a label ι to be well-typed with the
type τ , Σ(ι) must be a lower bound of τ in C. Also, for each m

that can be accessed through τ , H(ι)(m) must be well-typed for
any type variable t with the constraint set C ∪ {τ ≤ [m+ : t]}.
This constraint τ ≤ [m+ : t] represents a read access of m on τ .

Σ(ι) = ς ς ∈ LowerC(τ)

∀m. C ` m ∈ τ ⇒ Σ,Γ, H,C ∪ {τ ≤ [m+ : t]} ` H(ι)(m) : t

Σ,Γ, H,C ` ι : τ

We define a well-formed type τ with the judgement C ` τ .
An extended type (τ,M) is well-formed if for each member m in
M , there exists a corresponding constraint τ ≤ [m− :] in the
closure of the current constraint set C. This constraint represents
the writing of the member m to τ . Other kinds of types are well-
formed by default.

∀m ∈ UpperC(M). (τ,M) ≤ [m− :] ∈ cls(C)

C ` (τ,M)

τ 6= (t,M)

C ` τ
Using the above definitions, we define the program invariant as:

∀ι. ι ∈ dom(Σ)⇔ ι ∈ dom(H)

∀y. y ∈ dom(Γ)⇔ y ∈ dom(χ)

∀Fn ∈ χ(FT). Γinit ` Fn
∀y ∈ dom(χ). Γ(Γ(y)) = τ Σ,Γ, H,C ` χ(y) : τ C ` τ

Σ,Γ, C ` H,χ
The judgment Σ,Γ, C ` H,χ says that the heap H and stack

χ are well-formed with respect to the environments Σ and Γ, and
constraint set C. For this invariant to hold, the domains ofH and Σ
must be the same and the domains of χ and Γ have the same set of
variables. Also, each variable in χmust be well-typed and each def-
inition in χ(FT) is well-typed with the initial environment Γinit,
which only contains type mappings for functions and constructors.

Lemma A.1 shows that the execution of a well-typed statement
cannot lead to errors caused by accessing undefined object mem-
bers or functions. Also, the execution of a well-typed statement
will result in a well-formed heap and stack.

Lemma A.1. If Σ,Γ, C ` H,χ and Γ, C ` s ‖ Γ′, C′, then
H,χ, s 6; error, and if H,χ, s ; H ′, χ′, then ∃ Σ′ such that
Σ′,Γ′, C′ ` H ′, χ′.

The proof is by straightforward induction and is omitted.
From Lemma A.1, we can conclude that well-typed programs

will not lead to errors caused by accessing undefined members and
invoking object properties that are not functions.

Theorem A.2 (Type Soundness). If Γ ` P ‖ Γ′, C, then
∅, ∅, P 6; error and if ∅, ∅, P ; H,χ, then ∃ Σ such that
Σ,Γ′, C ` H,χ.

14 2011/10/23

