
Scoped Types for Real-time Java

Tian Zhao James Noble∗ Jan Vitek†

University of Wisconsin, Milwaukee
∗Victoria University of Wellington

† Purdue University

ABSTRACT
One of the distinctive features of the Real-Time Specifica-
tion for Java (RTSJ) is the new memory management model
based on scoped memory areas. This model allows real-
time programmers to ensure timely reclamation of mem-
ory and predictable performance for real-time tasks. The
price to pay for these benefits is an unfamiliar programming
model that is complex, requires runtime checks on all mem-
ory accesses, and rewards design-time errors with run-time
crashes. In this paper we describe Scoped Types, a statically
enforced programming discipline that eschews complexity
and run-time exceptions in favour of simplicity and safety.
We formalize our programming model in terms of a simple
object calculus and prove soundness of its type system.

1. INTRODUCTION
The Real-Time Specification for Java (RTSJ) [4] is designed
to allow the construction of large scale real-time systems in
type-safe high-level programming languages. The benefits
of using Java for mission critical systems are currently be-
ing evaluated in a number of companies and research labs
such as Boeing [32] and JPL [25]. As of this writing a high-
quality commercial implementation of the specification has
been released [23], and open source alternatives are in de-
velopment [2, 15, 26, 9, 36, 17, 33]. While the specification
includes many necessary features, the one that is most likely
to affect how real-time Java programs are written is the new
memory management model based on Scoped Memory.

An obvious concern for meeting hard real-time constraints
in Java is the interaction of automatic memory management
with real-time tasks. While garbage collection (GC) frees
the programmer from the burden of tracking memory usage,
it introduces unpredictability because the timing and dura-
tion of GC pauses is unknown. To address this problem, the
RTSJ provides: (a) regions of memory which are not subject
to garbage collection, called scoped memory areas, or scopes,
(b) threads that are guaranteed to never interact with the
heap and thus never interfere with, or be preempted by, the
garbage collector. Scoped memory areas provide predictable
allocation, and ensure that hard real-time threads will not
block while memory is being reclaimed. Their design abides
by a number of practical constraints. Firstly, hard real-time
tasks must to coexist with soft real-time and non real-time
tasks. Secondly, real-time Java programs must remain back-
ward compatible, thus changes to the standard libraries or
language syntax were deemed impossible. Lastly, Java being

an inherently concurrent language, multi-threading must be
supported. The resulting design is a distinctive program-
ming model which differs from existing region-based models
such as the MLKit [34].

In principle, scoped memory resembles the familiar notion
of cactus-stack allocation [3, 31]. Each scope provides a pool
of memory that can be used to allocate objects. Individual
objects cannot be deallocated, instead the entire scope is
reclaimed when its contents become unreachable. The main
difference with stack allocation is that scopes are first-class
entities which can be entered by multiple threads. The order
in which threads enter scopes induces a runtime structure
on scoped memory areas that determines permissible refer-
ence patterns. When a real-time thread executing in area M1

first enters area M2, area M1 becomes the parent of M2. RTSJ
semantics guarantee that M2 will be reclaimed before M1, the
lifetime of a nested area is thus always shorter than its par-
ent area. Threads executing in an area allocate from the
same pool and communicate though shared variables. When
the last thread exits an area, the objects allocated within it
are reclaimed. The last-in first-out natures of scoped mem-
ory allows for objects allocated in nested scopes, e.g. M2, to
refer objects in their parent, e.g. M1, but not the converse
as holding on to a reference into a shorter lived-scoped may
lead to dangling references, and jeopardize type safety, when
that scope was discarded.

To ensure type safety of real-time Java programs, the fol-
lowing invariants must be maintained at runtime:

1. Because a scope can be reclaimed at any time, an outer
scope may not hold a reference to an object within a
more deeply nested inner scope.

2. To avoid cycles in the scope parent relation, the nest-
ing structure of scopes is restricted to trees. In other
words, a scope may have only a single parent.

3. Because scopes can be shared by multiple threads, ob-
jects allocated within a scoped memory area can not
be discarded until all threads have finished using that
area.

Maintaining these invariants impose burdens on program-
mers. Any assignment could in principle violate the first
invariant, so a RTSJ compliant virtual machine is required
to check every store dynamically to ensure it does not create
an incoming reference. Thus any assignment statement can

1

potentially throw a runtime error. The second invariant,
that scopes have a single parent, must also be checked dy-
namically, and any operation that attempts to enter a scope
may also throw an exception. The third invariant makes it
hard to tell when a scope is deallocated, and thus harder to
predict a program’s memory usage.

We propose to address the above mentioned problems with a
new programming mechanism called Scoped Types, designed
to support safe scoped memory programming in concur-
rent systems. Our goal is to devise a solution which can
be adopted without major changes to the Java language
or the tools that are used to write and run Java programs
(e.g. compilers, development environment, and preproces-
sors). The underlying motivation is that we want to keep
the cost of adopting our proposed model low. In fact, we
have tried to retain the option of translating programs using
Scoped Types into plain Java programs and running them
on a vanilla Real-time Java virtual machine.

To appeal to practicing Java programmers, our proposal re-
quires minimal syntactic overhead. With Scoped Types, the
dynamic scoped memory area hierarchy of the RTSJ is cap-
tured by refactoring the program into packages such that
objects that are meant to live in the same scope will be de-
fined in the same package and annotated with the keyword
@scoped. Scopes are reified by instances of portal class,
these are Java classes annotated with keyword @portal.
The definition and behavior of scoped classes is constrained
by seven simple rules which taken together ensure that as-
signment errors will never occur and scope entry operations
will always succeed. Furthermore, deallocation of scope will
never lead to a dangling pointer.

The contributions of this paper are the following:

1. We present a new programming model for RTSJ which
provides static correctness guarantees while remaining
simple and eschewing the need to modify Java in a
significant way.

2. To gain confidence in the proposed model, we formalize
the programming rules in terms of a type system for
core object calculus called SJ.

3. We prove soundness of the type system, as well as es-
tablish other safety properties.

In related work Boyapati et.al. have proposed an ownership
based type system for providing similar static guarantees
for a RTSJ-like language [6]. While their system is strictly
more expressive, it is also much more complex and requires
changes to the compiler and entire Java tool chain. We
believe that starting with a less powerful but simpler basis
is a good way to proceed as it may be easier to convince
users to switch if the perceived cost is low. Furthermore, it
is still unclear how much expressive power is actually needed
to express most interesting RTSJ programs. For example,
in Ravenscar-Java (based on the Real-time Ada industry
standard) Wellings decided to forbid nested scopes entirely
on the grounds that it would render the programming model
simpler to use and the programs easier to validate [24].

To the best of our knowledge, the proof of correctness pre-

sented in this paper is the first proof addressing safety of
scoped allocation in the context of concurrent object calcu-
lus. At the time of this writing, Boyapati’s system has not
yet been shown sound [6]. Work on regions for functional
languages did not take concurrency into account [34, 35].

The paper is organized as follows. Section 2 illustrates the
use of RTSJ scope memory areas through a motivating ex-
ample. Section 3 introduces Scoped Types informally using
Java syntax and revisits the example of Section 2. Section 4
presents the SJ calculus and the scoped type system. The
proof of soundness is given in Section 5. Section 6 discusses
related work, and finally Section 7 concludes.

2. AN EXAMPLE: A REAL-TIME COLLI-
SION DETECTOR

To illustrate the usage of scopes, we present the example of
an aircraft collision detection algorithm [29]. Collision de-
tection is performed by a single real-time thread which re-
ceives a series of frames containing aircraft call signs along
with positions and direction vectors. The output of the al-
gorithm is a warning each time any pair of aircraft are on a
collision course. We have implemented two versions of the
algorithm — one in plain Java and one in RTSJ. The Java
implementation is 2500 lines of code of which fewer than
200 lines had to be adapted to make the program RTSJ
compliant.

Collision detection is performed iteratively. A frame object
containing a number of plane objects is received from the
sensors once per iteration of the main run loop. The contents
of the frame are used to update a state table and then com-
pute collision vectors. The RTSJ implementation of the al-
gorithm uses four scopes, the distinguished ImmortalMemory

and HeapMemory, along with two user-defined instances of
ScopedMemory. Fig. 2 illustrates the memory structure of

cdmem

HeapMemory

mem

ImmortalMemory

App

Runner

Detector

Frame

StateTable

ScopedMemory instance
Scope parenting relation
Legal memory reference
Backing store association
Physical memory
Realtime Thread

Figure 2: Scopes in the example application. The
main App object is allocated in immortal memory
imm. Application stable state is held in the scoped
area mem, per-iteration objects are allocated in cdmem.

2

class App extends NoHeapRealtimeThread {

static void main() {
imm = ImmortalMemory.instance();

app = (App) imm.newInstance(App.class));

app.start(); }

void run() {
LTMemory mem = new LTMemory(...);

mem.enter(new Runner()); } }

class Runner implements Runnable {

void run() {
LTMemory cdmem = new LTMemory(...);

Detector cd =

new Detector(new StateTable());

while (true)

cdmem.enter(cd); } }

class Detector implements Runnable {

StateTable state;

void run() {
Frame frame = receiveFrame();

pos in table = state.get(frame.getAircraft());

if (pos in table == null) {
mem = MemoryArea.getMemoryArea(this);

Aircraft new plane =

mem.newInstance(Aircraft.class);

plane.update(new plane);

pos in table = mem.newInstance(Position.class);

state.put(new plane, pos in table); }
pos in table.update(frame.getPosition());

}
}

Figure 1: The main method of the application is used to bootstrap the real-time task. The run method of
App is used to set up the application’s stable store. The Runner class holds the application’s main loop. All
methods are public unless stated otherwise. Class LTMemory is a kind of scoped memory which guarantees
linear time allocation. Class NoHeapRealtimeThread is the parent class of all hard real-time thread classes.

the program. While the main object, App, of the applica-
tion is created in immortal memory, none of the other ob-
jects should be allocated there, as objects in immortal mem-
ory are never deleted. Thus, the first action of the App.run

method is to create and enter a new scope, mem, that will be
used contain the program’s stable storage. A second scope,
cdmem, is used for temporary storage, so that all the tempo-
rary objects are deleted at the end of each iteration.

Fig. 1 illustrates the main points of the algorithm. The
App.main method is responsible for starting a new real-time
thread (App extends NoHeapRealtimeThread). As real-time
threads may not execute within the heap, the first action
that is performed by that method is to enter immortal mem-
ory. Note the use of reflection (newInstance) to create ob-
jects in different scopes. Then the App.run method creates
a new scope to hold the application’s stable store (all state
that must be preserved between iterations is stored in the in-
stance of class StateTable) and starts an instance of Runner
in the newly created scope.

The Runner.run method is an example of the scoped run
loop pattern [29]. The method starts by creating a scope,
cdmem, to hold temporary objects. Then it repeatedly exe-
cutes the Detector.run method within cdmem. Since there is
no other thread contending for that scope, after each itera-
tion the scope is cleared. We remark that the ScopedMemory
object itself remains intact between invocation, as does the
Detector – both are allocated in the mem area which is not
reclaimed for the lifetime of the application.

As can be seen from Fig. 1, although perhaps simple in the-
ory, RTSJ Scoped Memory is complex in practice. For ex-
ample, in each iteration of the run loop a new frame object
is created along with an aircraft and a position. These ob-
jects are all allocated in the cdmem scope, whereas the state

table is in the parent mem scope. In order to store a newly
detected plane in the state table, the program has to re-
flectively create instances of Aircraft and Position in the
correct (mem) scope. For another example, consider that the
Aircraft.update method (not shown here), takes an air-
craft as argument and copies the information out of itself
into its argument. We were forced to use this tortured de-
sign so that we can copy data allocated in the inner cdmem

scope into an object in the out stable store mem scope.

Discussion. This complex explanation shows that a large
amount of important information about this example is im-
plicit in the RTSJ code. The memory scopes within which
variables are allocated (and therefore to which they can re-
fer) are not recorded in the text of the program; there is
no information about the scope that a particular instance
of the Aircraft class is stored in, for example. This means
that a minor typographical error could go undetected by
the compiler, and then cause a runtime failure during rare
circumstances as the program is run — such as when the
program actually detects a collision. Similarly, the nesting
relationship between the imm, mem, and cdmem scopes is im-
plicit in the code: if the run method of the Detector class
attempted to reenter the mem scope, the program would suf-
fer a ScopedCycleException. Finally, the programmer in-
tends that all the objects contained within the cdmem scope
will be discarded after each iteration, but this is not in any
way obvious from the code of the program.

3. REAL-TIME PROGRAMMING WITH
SCOPED TYPES

To make real-time Java programming more reliable and pre-
dictable, we have developed a type system that can stati-
cally guarantee the absence of reference assignment errors,
enforce the single parent rule for scopes, and ensure that

3

package b

portal instance
Legal memory reference
Backing store association

Physical memory
Realtime Thread

c c c

A

BB

package b

package a package a;

@scoped class A {
...

}

package a.b;

@portal class B {
...

}

@scoped class C {
...

}

Figure 3: A small example of a program written with Scoped Types. The program’s static structure consists
of two packages a and a.b. At runtime to instance of the portal class B are created, thus giving rise to two
distinct scopes. Notice that portal objects, like ScopedMemory instances in the RTSJ, are allocated in the
parent scope. Overall, the code is shorter than the RTSJ version and makes explicit the allocation context
of objects.

there can be no references into the contents of a scope when
it is scheduled to be discarded. Our proposal, referred to
as Scoped Types, is intended as a replacement for scoped
memory in a real-time Java virtual machine. Scoped Types
require the addition of only two modifiers to the language,
no compiler changes, and minimal extra support from the
underlying virtual machine.

Scoped Types are envisioned primarily for the hard real-
time kernels of RTSJ applications. The current state-of-the
art in large commercial systems is that the hard real-time
component is typically 1% of the overall system, but the
code is rewritten from scratch for every release — reuse is
still viewed as a risk in most of the real-time community.
In this setting we believe that simplicity and clarity are the
most important requirements for any programming model.
For this reason, all choices in the design of Scoped Types
were made in favor of simplicity.

Language extensions. Our model distinguishes between
two kinds of classes in a real-time Java program: scoped
classes which are allocated within a particular memory scope,
and portal classes which reify memory scopes. Most of
the objects in the program are instances of scoped classes,
and are allocated in memory scopes. Instances of portal
classes turn scopes into first-class entities: threads enter
memory scopes by invoking methods of portal objects, and
exit scopes when these calls return. The key observation is
that an object allocated in a scoped memory area can only
be used in that scope and its nested subscopes. Thus, we
statically restrict the accessibility of a scoped class to the
classes whose instances are allocated in the same or nested
scopes.

Integration with Java. To minimize the changes to the
language (at least to its syntax and to the tool processing
the language) we take advantage of existing concepts, such

as visibility rules and access modifiers, to integrate Scoped
Tscopeypes with Java. Scoped and portal classes are de-
clared by appending the respective modifiers to class dec-
larations (@scoped and @portal), no other annotations are
needed. These annotations are consistent with the Metadata
JSR, and will be recognized by Java compilers. An alterna-
tive that does not rely on Metadata is to use an idiom based
on marker interfaces [38]. We call packages that contain
scoped types scoped packages. Scoped packages are the unit
of protection and of allocation. Each scoped package is the
static representation a family of memory scopes and defines
the types of objects that may be allocated in these scopes.
We use nested packages to represent potentially nested mem-
ory scopes: a memory scope created by some portal class in
a scoped package can only contain nested subscopes defined
by portal classes in immediate subpackages. Instances of
classes defined in top-level package are allocated in immor-
tal memory.

Dynamics. While scoped packages describe the static
structure of a runtime application, restricting applications
to have one single instance of each scope (and thus matching
the static package hierarchy) prevents some useful program-
ming idioms. Thus at runtime every instance of a portal
class corresponds to a new memory scope. So an application
that creates two instances of some portal gets two distinct
scopes which can be used independently. The type system
guarantees that references across these scopes cannot arise,
thus objects allocated within them can safely be reclaimed
at different times. A scope’s portal is the only object from
the scoped package that is visible in the parent package.
In fact, portals are allocated in their parent scope, just as
RTSJ ScopedMemory objects are allocated in an enclosing
area. The current allocation context is always defined by
the package in which the current class was defined (where
“current class” is taken to mean the class of the receiver of
the executing method). Changing allocation context is thus
as simple as calling a method of an object living in a differ-

4

ent scope. Concurrency comes in quite naturally – multiple
threads execute in the same scope if they invoke a method
on the same portal. The implementation keeps track of the
number of threads in a scope by a simple reference counting
scheme. Just as in RTSJ, objects within a scope can be re-
claimed when the last thread exits. Fig. 3 illustrates these
concepts.

Static guarantees. Our model imposes some static con-
straints on the accessibility of classes. We require that
scoped classes in a package are accessible only to the classes
defined that package and its subpackages, while portal classes
are only accessible to classes defined in their immediate par-
ent package. In other words, classes are not able to access
classes in inner nested subpackages (other than the portals
of their immediate subpackages). These constraints ensure
that a package’s portal classes form an encapsulation bound-
ary for classes outside that package: scoped classes, and
classes in subpackages are inside that encapsulation bound-
ary [27]. More importantly, they ensure that objects allo-
cated in one scope may never have incoming references to
objects allocated in inner scopes, and thus that Illegal-

AssignmentErrors can never happen. Threads can only en-
ter the scopes defined in some package (by calling meth-
ods on portal classes in that package) from the code in the
immediate super-package. This ensures that the hierarchy
of memory scopes always follows the same hierarchy as the
corresponding packages, enforcing the single parent rule and
preventing ScopedCycleExceptions.

Scoped Type Confinement Rules. Scoped Types’ static
guarantees are enforced by the following syntactic rules that
must hold for all scoped and portal classes. Rules C1, C2,
and C3 bind scoped classes, while Rules S1 to S3 bind por-
tal classes. Besides the visibility constraints of Rules C1 and
S1, we also require that (C2) references of scoped type can
not be widened to types in other packages while (S2) the
references of portal types cannot be widened to other types.
The restrictions on reference widening help us to track ref-
erences by their static types.

C1 A scoped type is visible only to classes in the same
package or subpackages.

C2 A scoped type can only be widened to other
scoped types in the same package.

C3 The methods invoked on a scoped type must be
defined in the same package.

S1 A portal type is only visible to the classes in the
immediate super-package.

S2 A portal type can not be widened to other types.

S3 The methods invoked on a portal type must be
defined in the same class.

These rules are similar in spirit to the confinement rules
presented in [38]. The type system presented in the next
section formalizes these intuitive rules.

Restrictions. Scoped Types do restrict the set of valid
programs, while they do not require changes to the syntax
they do introduce significant changes to the programming
model. To start with, while an instance of a scoped class
may extend an arbitrary class, none of the methods defined
outside of the scoped package can be invoked. Furthermore
the restrictions on widening mean that the reuse of library
classes will be limited. We defend these choices by remarking
that most library code has not been designed for being used
in a real-time setting, and libraries can be used freely in
non-RT parts of the program.

3.1 The Example Revisited
Scoped Types simplify programming within nested memory
scopes. We can rewrite the collision detector example to
use Scoped Types with very few changes. We first need
to define three packages to model the three scopes of the
original application. This is because in Scoped Types, the
programmers have to choose the package within which each
class should be statically defined, rather than deciding where
instance should be dynamically allocated, as in RTSJ.

The scoped version of the program, shown in Fig. 4 and
the code in Fig. 5, consists of three packages, imm, imm.mem
and imm.mem.cdmem mirroring the dynamic scope hierarchy
of the algorithm. The class Main is the only class that ex-
ecutes in immortal memory, and its only purpose is to cre-
ate an instance of the App class, which is the portal of the
imm.mem package. The App class, once started, will then allo-
cate an instance of the Detector class, which is the portal for
the imm.mem.cdmem scope. The run loop again boils down
to calling the detector’s run method. The program’s sta-

package mem

cTmpPosition

package cdmem

package imm

TmpAircraft

Detector
StateTable

Position

Aircaft

Main

App

Figure 4: The reference patterns of scoped and por-
tal objects in the Scoped Type version of the exam-
ple. The only references allowed to go from a parent
package to a child are references originating from
the portal. The portal object is a dominator for all
scoped types in its package and subpackages. Note
that although the figure does not show it, references
from child packages to their parents are allowed.

5

package imm;

@scoped class Main {
static void main() { new App().start();}}

package imm.mem;

@portal final class App

extends NoHeapRealtimeThread {
void run() {

cd = new Detector();

state = new StateTable();

key = new Aircraft();

while (true) cd.run(state, key); } }

@scoped class StateTable ...

@scoped class Aircraft ...

@scoped class Position ...

package imm.mem.cdmem;

@portal final class Detector {
void run(StateTable state, Aircraft key) {

frame = receiveFrame();

TmpAircraft plane = frame.getAircraft();

plane.update(key);

pos in table = state.get(key);

if (pos in table == null)

state.put(plane.copy(),

frame.getPosition().copy());

else

frame.getPosition().update(pos in table);

} }

@scoped class TmpAircraft ...

@scoped class TmpPosition ...

@scoped class Frame ...

Figure 5: The collision detector example with Scoped Types. The program is split into three packages
representing the different scopes used in that program. All support classes (e.g. Aircraft) are defined in the
appropriate scope.

ble state is held in the imm.mem package, and is composed
of instances of the StateTable, Aircraft, and Position

classes. Per-iteration temporary objects are stored in the
cdmem package and consist of TmpAircraft, TmpPosition

and Frame.

Notice that with Scoped Types it is impossible to confuse
planes in the inner imm.mem.cdmem scope with planes in the
stable imm.mem scope, as they are represented by different
types. A copy method is implemented in TmpAircraft to
create a Aircraft object that must, by definition, be allo-
cated in the parent scope. Similarly, since the state table
is allocated in imm.mem, the types in imm.mem.cdmem are not
accessible to it. Thus, we cannot use a TmpAircraft ob-
ject as the key to find out whether a plane is already stored
in the table, and we use an Aircraft object instead. The
update method of a TmpAircraft object refreshes the key

with the information about the current plane.

In this way, Scoped Types statically maintains the invariants
that RTSJ checks dynamically. By statically associating
scoped objects to their defining packages, Scoped Types can
ensure that incoming references are never created. Similarly,
by modeling nested scopes with nested packages, Scoped
Types ensure that scopes will never form cycles. Finally, by
statically tracking the objects contained within each scope,
Scoped Types ensure that it is safe to discard all the objects
in a scope once the last thread has left it.

The expressive power of Scoped Types, as presented here,
is strictly less than that of approaches based on ownership
types [6]. We can easily regain some expressive power by, for
example, using generics à la Generic CFJ [38], to parameter-
ize classes by their scope. With generics, there would only
be a single Aircraft class instantiated in different scopes.
While we have investigated such an extension, it is unclear
if the added expressive power would justify the increase in
complexity.

4. THE SJ CALCULUS
To gain confidence in the programming model underlying
our proposal, we introduce the SJ calculus, a sparse imper-
ative and concurrent object calculus, modeled after Feath-
erweight Java [22], in which scopes are first-class values. SJ
formalizes the type confinement rules of Scoped Type in
terms of a type system. Our proof of type soundness gives
us the guarantee that confinement can not be breached dur-
ing execution of a well type program. We can then proceed
to prove that the shape of the scope hierarchy is restricted
to tree. And, finally, that deallocation of a scope will not
result in dangling references.

SJ is a simple object calculus, to keep the semantics concise
we have omitted some features that are not essential to the
main results. These features include static methods (we
could model classes by singleton objects allocated in the
topmost scope), synchronization, access modifiers and down-
cast expressions. Unlike other systems such as [6], down-cast
are not problem in SJ because the restrictions imposed by
the Scoped Type Confinement rules ensure that any variable
of a scoped type always refer to an instance of that type or
of a subtype defined in the same scoped package. While
there is no explicit up-cast expression in SJ, up-casts arise
due to the usual implicit widening occurring in assignment
and method invocation.

4.1 Syntax and Types
The syntax of the SJ calculus, Figure 6, draws on our pre-
vious work [38] which, in turn, was based on Featherweight
Java (FJ). SJ has two kinds of class declarations, scoped
classes and portal classes, the former annotated with a scoped

and the latter with a portal. Classes belong to packages,
which can be nested in an arbitrary package hierarchy. Each
package may contain a mixture of scoped and portal classes.
We add an assignment expression and an expression for cre-
ating a new thread of control. Finally, we add a reset expres-

6

sion, which clears the fields of a portal object if the objects
is not used by any threads. Reseting a portal corresponds
to deallocating a scope in RTSJ, the operation was added to
model GC, but is interesting in its own right as we observed
in [29].

We take metavariables C, D to range over classes, M to range
over methods, K over constructors, and f and x to range over
fields and parameters, respectively. We also use P for pack-
age names, e for expressions and ` for memory references.
We use over-bar to represent a finite ordered sequence, for
instance, f represents f1 f2 . . . fn. The term l . l′ denotes
sequence concatenation. The calculus has a call-by-value
semantics. The expression [v/vi]v yields a sequence identi-
cal to v except in the ith field which is set to v. We use
the usual dot notation to represent nested packages. That
is, the package p.q is a subpackage of p. The presentation
of the calculus inherits some of the syntactic oddities of FJ,
so e e is a short hand for e1 . . . en e, and m(C x) stands for
m(C1 x1, . . . , Cn xn).

We assumes the existence of a class table CT containing the
definitions of all classes. For simplicity, we assume that a
class name C uniquely identifies the entry CT (C) in the class
table (this is not a real restriction, the motivation for this
choice was to avoid cluttering rules with package names).
We can find out the name of the package that contains C by
looking up the defintion in CT (C).

L ::= ◦ class P.C / D { C f; K M }

K ::= C() {super(); this.f := new D(); }

M ::= C m(C x) { return e; }

e ::= x | this | e.f | e.m(e) | new C() | e.f := e

| spawn e | reset e | v

◦ ::= portal | scoped v ::= ` P ::= p | p.P

Figure 6: Syntax of the SJ calculus.

The subtyping rules of Figure 7 are standard. We define the
partial order � to limit the variables that can refer to
scoped objects and portals; C � C′ is defined if either C is
a portal type and C = C′, or C, C′ are scoped and belong to
the same package.

4.2 Semantics
In SJ, each portal object represents a distinct scoped mem-
ory area and whenever a portal is reset all of the objects that
were allocated within the associated scope are reclaimed.
While the package hierarchy imposes a static structure on
scopes, portal objects allow multiple scope instances to be
created at runtime. The main restriction imposed by SJ
is that a portal can only allocate objects of scoped classes
belonging to the same package and portals defined in imme-
diate subpackages. When this restriction is combined with
confinement invariants that prevents portal objects leaking
from their parent package, we obtain the key property for
scoped memory management, namely the restriction that

Subtyping:

C <: C
C <: C′ C′ <: C′′

C <: C′′

CT (C) = ◦ class P.C / C′ { . . . }
C <: C′

Scope-safe subtyping:

C � C
′ iff C <: C

′ and

 either C, C′ are scoped types
and in the same package

or C is a portal type and C = C′

Allocation:

Suppose σ(`) = C
`′
0 (v)

allocScopeσ(C, `) = ` if C0 is a portal type

and

either C is a scoped type and

C, C0 in the same package
or C is a portal type and

C in the immediate subpackage of C0

allocScopeσ(C, `) = allocScopeσ(C, `′) otherwise

Evaluation context:

E[◦] ::= ◦ | E[◦].m(e) | v.m(. . . , vi−1, E[◦], ei+1 . . .)

| E[◦].fi | E[◦].fi := e | v.fi := E[◦] | resetE[◦]

Scope reference counts:

refcount(`, t[` e] | P ′) = count`(`) + refcount(`, P ′)

refcount(`, ∅) = 0 count`(∅) = 0

count`(` . `) = 1 + count`(`) count`(` . `′) = count`(`)

Figure 7: Auxiliary definitions.

threads enter scopes in the same order as the nesting rela-
tion of the packages containing the portal classes.

As in Featherweight Java, the semantics assumes the exis-
tence of a class table containing the definitions of all classes.
We had to add a store σ and a collection of threads P la-
beled by distinct identifiers t. Objects are of the form C`(v),
where C is a class, v the value of the fields, and ` the por-
tal of the scope in which it was allocated. The store σ is a
sequence, C`(v), of objects, each denoted by a distinct label
`i. Fig. 7 defines a number of auxiliaries relations.

The partial function allocScopeσ(C, `) retrieves the alloca-
tion scope for an object of the type C when the current
receiver object is `. Our type system ensures that all the
scopes form a tree. Intuitively, allocScopeσ(C, `) searches
the scope tree upward starting from ` or the scope of ` until
it finds a scope `′ of the type C′, which is in the same package
as C if C is scoped and is in the immediate super-package of
C if C is a portal. For some C and `, allocScopeσ(C, `) is not
defined.

An evaluation context, Fig. 7, is an expression E[◦] with a
hole that can be filled in with another expression of proper

7

σ(`) = C`′(v) fields(C) = (C f)

σ, `0 `.fi → σ, `0 vi
(R-Field)

σ(`) = C`′(v) fields(C) = (C f)

σ′ = σ[` → C`′([v/viv])]

σ, `0 `.fi := v → σ′, `0 v
(R-Update)

allocScopeσ(C, `0) = `′ ` fresh

init(C) = new D() σ′′ = σ[` → C`′(null)]
σ′′, ` new D1() → σ1, ` v1

. . .
σn−1, ` new Dn() → σn, ` vn

σ′ = σn[` → C`′(v)]

σ, `0 new C() → σ′, `0 `
(R-New)

e 6= reset `, `.m(v) σ, `0 e → σ′, `0 e′

σ, `0 E[e] → σ′, `0 E[e′]
(R-Cong)

σ(`) = C`′(v) init(C) = new D()
σ, ` new D1() → σ1, ` v

′
1 . . .

σn−1, ` new Dn() → σn, ` v
′
n

σ′ = σn[` → C`′(v′)]

σ, `0 reset ` → σ′, `0 `
(R-Reset)

σ(`) = C`′(v′) mbody(m, C) = (x, e)

σ, `0 `.m(v) → σ, ` [v/x, /̀this]e
(R-Invk)

Figure 8: Expression evaluation.

P = P ′′ | t[` e . ` e]

P ′ = P ′′ | t[` e . ` e′]
e 6= reset `′, `′.m(v) σ, ` e → σ′, ` e′

σ, P ⇒ σ′, P ′ (G-Step)

P = P ′′ | t[` e . ` e]

P ′ = P ′′ | t[` e . ` E[`ret] . `′ e′]
e = E[e0] e0 = `′.m(v)

σ, ` e0 → σ, `′ e′

σ, P ⇒ σ, P ′ (G-Enter)

P = P ′′ | t[` e . ` e . `′ v]

P ′ = P ′′ | t[` e . ` E[v]] e = E[`ret]

σ, P ⇒ σ, P ′ (G-Return)

P = P ′′ | t[` e . ` e]

P ′ = P ′′ | t[` e . ` E[`th]] | t′[` `ret . ` e0]
e = E[spawn e0] t′ fresh

σ, P ⇒ σ, P ′ (G-Spawn)

P = P ′′ | t[` e . ` E[reset `′]]

P ′ = P ′′ | t[` e . ` E[`′]]
if refcount(`′, P) 6= 0 then σ′ = σ

else σ, ` reset `′ → σ′, ` `′

σ, P ⇒ σ′, P ′ (G-Reset)

Figure 9: Computation rules.

type. Evaluation contexts do not include the body of spawn .

The dynamics semantics of SJ is split in two: expression
evaluation rules given in Fig. 8 and the computation rules
in Fig. 9.

Expression rules. These evaluation rule consider only
operations performed within a single thread. The evalua-
tion relation has the form σ, ` e → σ′, `′ e′ where σ is the
initial store, ` is the reference to object currently executing,
and e the expression to evaluate. The reduction rules field
select (R-Field), field update (R-Update), and method in-
vocation (R-Invk) are not surprising. The rule (R-Cong)
allows for the reduction of a subexpression within an evalu-
ation context.

The instantiation rule (R-New) must ensure that the class
of the object about to be created, C, can be instantiated
in the current scope (as defined by allocScopeσ(C, `0) = `′).
The fields of C must also be initialized, though not in the
current scope but rather in the scope of the newly allocated
object (this only matters if C is a portal). Finally the store
is updated with a fresh reference ` bound to the newly al-
located object. The helper function init(C) is defined in

Figure 12.

The reset rule (R-Reset) clears all fields of the target ob-
ject. This has the effect to ensure that all objects previously
in the scope are now unreachable. The target object fields
are set to newly allocated default values. In practice, the
real-time Java programmers don’t have to explicitly write
such reset expressions as a Java virtual machine should be
able to maintain reference count to a portal and implicitly
perform reset operations.

Computation rules. The computation rules of the form
σ, P ⇒ σ′, P ′ where σ is a store and P a set of threads.
Each thread t[` e] in P has a distinct label t and a runtime
call stack which is a list of receiver-expression pairs `, e.

Rule (G-Step) is simple, it picks one thread for execution
and evaluates the expression e on the top of the thread’s
stack. Note that this rule applies when e is not a method
invocation or reset expression.

Rule (G-Enter) evaluates a thread t[` e . ` e] containing a
method call e = E[e0] and e0 = `′.m(v). It creates a new
stack frame for the body of the method, e′, and introduces a

8

place holder, `ret for the return value of the call in the origi-
nal expression. Thus the result is a frame ` e . ` E[`ret] . `′ e′.
Note that `ret does not correspond to any actual object,
there can only be one occurrence of `ret per frame, and that
(G-Return) ensure that `ret will never be manipulated dur-
ing expression evaluation.

If the expression on the top of a thread’s stack is reduced to
a value v, then by Rule (G-Return), the thread can pop the
stack frame and continue execution with v as the resulted
value of a method call.

Rule (G-Spawn) evaluates a thread t[` e . ` e] containing a
spawn expression e = E[spawn e0]. The value of the spawn
expression in e is the distinguished `th which is a unique,
global reference to an object of class Thread and we assume
that `th is allocated in immortal memory. A new thread t′

is created to evaluate ` e0. The new thread is started with
a call stack ` `ret that matches the call stack of the original
thread t to ensure that scope reference counts are accurate.

Rule (G-Reset) clears the fields of a portal `′ when no
thread is using that portal (i.e. when refcount(`′, P) = 0).
For simplicity, the fields of a portal are reset to default value
explicitly by a reset expression of the form reset `′ and if
the reference count of `′ is not zero, then the fields of `′ are
not cleared (this makes reset nonblocking to avoid deadlock).

4.3 Type Rules
The typing rules are shown in Figure 10 and 11 and the
related auxiliary functions are defined in Figure 12. The
type judgments are of the form Γ, Σ ` e : C, where Γ is the
type environment of variables and Σ is the type environment
of object labels.

Recall that we defined a partial order � on types such
that C � C′ is true iff C <: C′, C′ must be defined in the
same package as C and if C is a portal type, then C′ must be
the same type. If C � C′, then we say that C is a scope-safe
subtype of C′ and the widening of a reference from the type C
to C′ is scope-safe. By Rules (T-Update) and (T-Invk), the
reference widening in the field assignments and parameters
passing is scope-safe.

Rule (T-Store) of the form Σ ` σ says that object store
σ is well typed, if the type environment Σ has the same
domain as σ and for each object label ` in the domain of
σ, Σ(`) is equal to the type of σ(`) and σ(`) must also be

well-typed. If σ(`) = C`′(v), then by Rule (T-StoreLoc),

an object C`′(v) is well-typed, if the types of v are scope-safe
subtypes of the field types.

In the typing rule for class (T-Class), we require that in
a class C, the base class can not be a portal type and the
types of the fields and the base class must be visible in C.
Also, all methods in a class must be well-typed by Rule
(T-Method). If a method is well-typed, then the method
body is well-typed by the expression typing rules, the type
of the return expression is not widened, and the method
expression must be visible in the class of the method by the
expression visibility rules in Figure 13. Note that in (T-

Class) we abuse notation by writing visible(C, C) to assert
that all types in the C are visible in C.

Type visibility:

visible(C, C0) iff

either C is a scoped type and in the same

or the super-package of C0

or C is a portal type and
in the immediate subpackage of C0

Static expression visibility:

Γ ` visible(this, C0)

Γ, ∅ ` e : C visible(C, C0)

∀e′ ∈ subexp(e) . Γ ` visible(e′, C0)

Γ ` visible(e, C0)

subexp(e) =

∅ if e = x | v | new C()
{e0, e} if e = e0.m(e)
{e0, e1} if e = e0.fi := e1
{e0} if e = e0.fi | spawn e0 | reset e0

Figure 13: Type and expression visibility.

Visibility of types and expressions. The static con-
straints in our model are mostly to restrict widening of ref-
erences, and also to limit the accessibility of expressions by
their types. For example, an expression of scoped type C is
only visible in the defining package of C and its subpackages.

In Figure 13, we define a relation on types, visible(C, C′)
(type C is visible from type C′), which encodes the SJ access
control rules: a scoped type defined in package P is visible to
classes defined in P and its subpackages; a portal class is only
visible from classes defined in the immediate parent package.
One slightly surprising implication of this definition is that
a portal type is not visible in its own class definition. Thus a
portal class C does not contain code that refers to itself with
the exception, as we shall see later, of the pseudo variable
this which may indeed be used to access fields and methods
from within the portal class.

We illustrate the visibility relation of types with the table
in Figure 14, which shows when the types in the leftmost
column is visible in the classes in the first row.

p.Port p.Scop p.q.Port p.q.Scop

p.Port

p.Scop visible visible visible visible
p.q.Port visible visible
p.q.Scop visible visible

Figure 14: The types p.Port, p.Scop are the por-
tal and scoped type in the package p and p.q.Port,
p.q.Scop are the portal and scoped type in the pack-
age p.q. The package p.q is a subpackage of p. The
table entries indicate whether the types in the left-
most column is visible in the classes in first row.

We check the method body to determine whether type visi-
bility constraints are violated in a class. The checking rules

9

Γ, Σ ` x : Γ(x) (T-Var)

Γ, Σ ` ` : Σ(`) (T-Loc)

Γ, Σ ` `th : Thread (T-Thread)

Γ, Σ ` e0 : C fields(C) = (C f)

Γ, Σ ` e0.fi : Ci
(T-Field)

Γ, Σ ` e0 : C′ mdef (m, C′) = C′′

mtype(m, C′′) = C→ C

Γ, Σ ` e : D D � C C′ � C′′

Γ, Σ ` e0.m(e) : C
(T-Invk)

Γ, Σ ` new C() : C (T-New)

Γ, Σ ` e : C fields(C) = (C f)
Γ, Σ ` e1 : C1 C1 � Ci

Γ, Σ ` e.fi = e1 : Ci
(T-Update)

Γ, Σ ` e : C

Γ, Σ ` spawn e : Thread
(T-Spawn)

Γ, Σ ` e : C C is a portal

Γ, Σ ` reset e : C
(T-Reset)

Figure 10: Expression typing.

Store Typing:

dom(Σ) = dom(σ) ∀` ∈ dom(σ) .
Σ ` σ(`) ∧ Σ(`) = C if σ(`) = C`0(v)

Σ ` σ
(T-Store)

fields(C) = (C f) ∅, Σ ` v : D D � C

Σ ` C` (v)
(T-StoreLoc)

Method typing:

Γ = x : C, this : C Γ, ∅ ` e : C′′ C′′ � C′

override(m, D, C→ C′) Γ ` visible(e, C)

C′ m(C x) { return e; } OK IN C / D
(T-Method)

Class typing:

K = C() {super(); this.f := new D(); }
M OK IN C / D D � C visible(CDD, C)

◦ class P.C / D { C f; K M } OK
(T-Class)

Figure 11: Type rules of store, method, and class.

Initializer look-up:

init(Object) = ()

CT (C) = ◦ class P.C / D { C f; K M } init(D) = new D′()

K = C() {super(); this.f := new C′(); }
init(C) = new D′(), new C′()

Field look-up:

fields(Object) = ()

CT (C) = ◦ class P.C / C′ { C f; K M } fields(C′) = (C
′
g)

fields(C) = (C
′
g, C f)

Method definition lookup:

CT (C) = ◦ class P.C / C′ { C f; K M } m is defined in M

mdef (m, C) = C

CT (C) = ◦ class P.C / C′ { C f; K M } m is not defined in M

mdef (m, C) = mdef (m, C′)

Method type lookup:

mdef (m, C) = C′ CT (C′) = ◦ class P.C′ / C′′ { C f; K M }

D m(D x) { return e; } ∈ M

mtype(m, C) = D→ D

Method body look-up:

mdef (m, C) = C′ CT (C′) = ◦ class P.C′ / C′′ { C f; K M }

D m(D x) { return e; } ∈ M

mbody(m, C) = (x, e)

Valid method overriding

mtype(m, C0) = D→ D C, C = (D, D)

override(m, C0, C→ C)

Figure 12: Auxiliary functions.

are in Figure 13 and they state that if an expression e of
type C is visible in a class C0, then either e = this or the
type C must be visible in the class C0 (i.e. visible(C, C0)) and
all the subexpressions of e to be visible in C0. This fact is
represented by the judgment Γ ` visible(e, C0). We make
an exception for this because even though a portal type is
visible only to the classes of its immediate super-package,
a portal object must be able to use the variable this for

accessing its fields and calling its methods. For any scoped
class, the type of the variable this are always visible in its
class.

10

5. PROPERTIES OF THE CALCULUS
The purpose of our model is to simplify the allocation of
objects in scoped memory areas. Thus, we would like to
statically guarantee the properties that:

During the evaluation of a real-time program,

(1) the nesting structure of scopes remain a tree,

(2) deallocated objects in scopes are no longer
accessible.

In RTSJ, the nesting structure of scopes is determined by
how the threads enter the scopes. In our model, the scope
structure is fixed by how the portal objects representing the
scopes are created. That is, if a scope a is represented by
a portal object created in the scope b, then a must be di-
rectly contained in b; moreover, the portal object represent-
ing a is defined in the immediate subpackage of the portal
object representing b. In Theorem 7, we prove that if a pro-
gram is well-typed, then it will maintain some runtime in-
variants (explained below) during computation and it won’t
get stuck. The runtime invariants guarantee that the scopes
represented by the portal objects can form a tree. They also
ensure that the threads in a program will preserve such a
scope tree such that each thread either enters the scopes al-
ready entered by the thread or enters a new scope directly
contained in the current scope of the thread. We prove this
claim in Lemma 8. Thus, even though a scope stack of a
thread may grow indefinitely (e.g. the thread reenters the
scopes already on stack), the nesting structure of scopes re-
sembles the nesting structure of the scoped packages and
always remains a tree.

We prove the second property in Theorem 10. Since we do
not remove any object from the store, there will never be any
dangling references in our calculus. However, we can still
model the absence of dangling references in actual languages
by ensuring that the deallocated objects are never used by
any threads. We model deallocation using the explicit reset
expression, which clears the fields of a portal if the portal is
not used by any threads. We prove in Theorem 10 that the
objects allocated in the portal before the reset are no longer
accessible afterward.

The proofs of the theorems use two runtime invariants spec-
ified by the predicates safe(σ) and safe(σ, `0, e) defined in
Figure 15. If the predicate safe(σ) is true, then any object
in σ can safely access the objects referenced in its fields.
The predicate safe(σ, `0, e) is true if any object referenced
in the expression e can be safely accessed by `0.

Before we define the safe access of an object by another,
first recall that an object of the label ` in the store σ is of

the form C`′(v), where C is the type, v are the fields, and `′

represents the memory area where the object is allocated.

if σ(`) = C
`0(v) then fieldσ(`) = v, scopeof σ(`) = `0,

and typeσ(`) = C

` ≺σ `′ if scopeof σ(`) = `′

or ` ≺σ `′′ ∧ `′′ ≺σ `′

∀` ∈ e . `0 ≺σ scopeof σ(`) ∨ scopeof σ(`) = `0
safe(σ, `0, e)

∀` ∈ dom(σ) σ(`) = C`0(v) allocScopeσ(C, `0) = `0
∀`′ ∈ v . ` ≺σ scopeof σ(`′) ∨ scopeof σ(`′) = `

safe(σ)

Figure 15: Safe stores and expressions.

The helper functions typeσ(`) = C, scopeof σ(`) = `′, and
fieldσ(`) = v, retrieve types, scope, and fields of an object.

We define a relation ≺σ on labels such that ` ≺σ `′ holds if
the object ` belongs to the scope represented by portal `′.
Note that ≺σ is transitive but not reflexive, a portal object
is not allocated within the scope that it represents.

We can think of the objects in σ as a tree so that if ` ≺σ `′,
then σ(`′) is an ancestor of σ(`). If σ(`), σ(`′) are of por-
tal types and ` ≺σ `′, then σ(`′) represents a memory area
containing the area represented by σ(`). Thus, objects in
σ can form a tree that has the same hierarchy as that of
the memory areas. In this tree, the root is the object rep-
resenting the immortal memory area, the other inner nodes
are portals, and scoped objects can only be the leaves. We
assume that the scope of the root object is the immortal
memory area represented by itself.

Safety invariants during computation. The safety
conditions of store and expressions ensure safe access of ob-
jects allocated in scoped memory areas.

An object ` can safely access `′ if either ` ≺σ scopeof σ(`′)
or scopeof σ(`′) = `. The first case means that `′ must be
allocated in the scope of ` or one of its parents. The latter
case means that `′ is allocated in the scope represented by
` (provided that σ(`) is a portal).

The condition safe(σ) says that every object in the store σ
is safe. An object σ(`) = C`0 (v) is safe if ` can be allocated
in `0 (as specified by the condition allocScopeσ(C, `0) = `0)
and ` can safely access any object pointed by `′ ∈ v. This
invariant is easy to maintain since the allocation area of an
object remains the same during the lifetime of the object.
The condition safe(σ, `0, e) says that the `0 can safely access
the objects referenced in the expression e. The place holder
`ret may be a part of e for the condition safe(σ, `0, e) to be
true since `ret will not be manipulated during computation.

Runtime expression visibility. The definition of run-
time expression visibility is technical and only used in the
proofs. It describes the visibility constraints of runtime ex-
pressions corresponding to the static expression visibility
constraints. The judgment Σ ` visible(e, `) is true if the
expression e is visible in the object `. That is, either e = `
(when ` is a portal), or e = `ret, or if ∅, Σ ` e : C, then the
type C is visible in the type Σ(`) and the subexpressions of

11

e are also visible in `.

Σ ` visible(`, `) Σ ` visible(`ret, `)

∅, Σ ` e : C visible(C, Σ(`))

∀e′ ∈ subexp(e) . Σ ` visible(e′, `)

Σ ` visible(e, `)

The properties of expressions. In our model, a pro-
gram consists of a set of threads. Each thread t[` e] has a
unique label t and ` e is a stack of 2-tuples, each of which
includes an object label `0 and an expression e. Intuitively,
each of the 2-tuple corresponds to a frame in the call stack
of the thread and the label `0 refers to the receiver object
of the method call that is reduced to e. We want to show
that at each step of the computation, we have safe(σ) and
safe(σ, `0, e). The second condition means that each object
referenced in the current expression e can be safely accessed
by `0. Note that this is a requirement stronger than neces-
sary to prove Theorem 10. We choose this condition because
it is easier to prove. If we change our model to accommo-
date more flexible programming style, then we might have
to relax this condition.

For rest of the section, we assume that all classes in the class
table CT are well-typed. The following lemma proves that
subject reduction preserves typing and safety conditions.

Lemma 1 Given a store σ, an object label `0 and an ex-
pression e, if

1. safe(σ), safe(σ, `0, e), and

2. Σ ` σ, ∅, Σ ` e : C, Σ ` visible(e, `0),

and σ, `0 e → σ′, `′0 e′, then

1. safe(σ′), safe(σ′, `′0, e
′), and

2. ∃Σ′, C′ such that Σ′ ` visible(e′, `′0), Σ′ ` σ′, ∅, Σ′ `
e′ : C′, where C′ � C.

The proof is by induction on the type derivation of the ex-
pression e. In the case e is a method call, we uses Lemma 2.

Lemma 2 If x : B, Σ ` e : D, ∅, Σ ` v : A, A � B, then ∃C
such that ∅, Σ ` [v/x]e : C, where C � D.

The following lemmas show that a well-typed and safe ex-
pression and store can make progress.

Lemma 3 If Σ ` σ, ∅, Σ ` e : C, and e = `.m(v), then ∃e′
such that σ, `0 e → σ, ` e′.

Lemma 4 If Σ ` σ, ∅, Σ ` e : C, safe(σ), safe(σ, `0, e),
and Σ ` visible(e, `0), then

1. either e is an irreducible value, or contains expressions
of the forms `.m(v), spawn e, reset `,

2. or ∃σ′, e′ such that σ, `0 e → σ′, `0 e′.

The proof is by induction on the type derivation of the ex-
pression e. The only non-trivial case is when e = new C(), we
need to show that the partial function allocScopeσ(C, `0) can
return an allocation scope for C. Suppose that the type of
σ(`0) is C0. From Σ ` visible(e, `0), we know that C is visible
from C0. Thus, if C is a portal type, then it is defined in the
immediate subpackage of C0 and allocScopeσ(C, `0) = `0. If C
is scoped, then it is defined in the same or the super-package
of C0. From safe(σ), we know that the nesting relation of
scopes corresponds to the nesting relation of the packages
(where the portal objects that represent the scopes are de-
fined). Thus, we can always find an allocation scope of C by
searching the scope stack upward starting from the scope of
σ(`0) or from the scope represented by σ(`0) if σ(`0) is a
portal object.

The properties of computation. We first give the
definitions of well-typed and safe programs, then define the
conditions in which a thread can get stuck, and last we prove
that a well-typed program will not be stuck and its reduction
preserves safety properties for the expressions of all threads.

A program σ, P is well-typed if ∃Σ such that Σ ` σ, and for
each thread t[` e] in P , we have

1. ∀ ` e ∈ ` e . Σ ` visible(e, `),

2. if ` e = . . . ` e . `′ e′ . . ., then Σ ` visible(`′, `), and

3. if ` e = `1 e1 . . . `n en and
e′n = en, . . . , e

′
k = [e

′
k+1/`ret]ek, . . . , e

′
1 = [e

′
2/`ret]e1,

then ∃C such that ∅, Σ ` e′1 : C.

The definition of a well-typed program is technical and it
basically says that the expressions in each thread of a well-
typed program must satisfy some visibility constraints and
if we substitute each place holder `ret in a thread with the
expression that it replaced, then the final expression is well-
typed.

A program σ, P is safe if safe(σ) and for each thread t[` e]
in P , we have

1. ∀` e ∈ ` e . safe(σ, `, e), and

2. if ` e = . . . ` e . `′ e′ . . ., then safe(σ, `, `′).

The following two lemmas show that subject reduction pre-
serves typing and safety conditions of a program and if a
program is well-typed and safe, then it can make progress.

Lemma 5 If σ, P is well-typed and safe, and σ, P ⇒ σ′, P ′,
then σ′, P ′ is well-typed and safe.

12

The proof is straightforward and it applies Lemma 1.

We say that a thread of the form t[`0 v] in P is terminated.

Lemma 6 If σ, P is well-typed and safe, then either all
threads in P are terminated or there exists σ′, P ′ such that
σ, P ⇒ σ′, P ′.

The proof is also straightforward and it applies Lemmas 3
and 4.

We say that an irreducible program σ, P is stuck if P con-
tains a non-terminated thread. Also, let ⇒∗ be the reflexive
and transitive closure of ⇒.

Theorem 7 If σ, P is well-typed and safe, and σ, P ⇒∗

σ′, P ′, then σ′, P ′ is not stuck and it is well-typed and safe.

The proof is immediate from Lemma 5 and 6.

Nesting structure of scopes. Suppose that the program
σ, P is safe. From safe(σ), we have that any portal object
σ(`) in σ, (where σ(`) = C`0(v)), is allocated in the scope
represented by the portal σ(`0) and the type of σ(`0) is
defined in the immediate super-package of C. Let the scope
represented by σ(`0) be the parent of the scope represented
by σ(`). Then, the scopes represented by the portal objects
in σ form a tree with immortal memory as the root.

We will show that a thread will enter scopes according to
the tree structure of scopes. That is, either a thread t enters
the scopes already entered by t or enter a new scope that is
directly contained in the current scope.

In our model, a thread enters a scope each time that a
method call `.m(v) is evaluated and a new stack frame ` e is
pushed onto the stack. If σ(`) is a scoped object, then the
entered scope is represented by the portal scopeof σ(`) and
we show in Lemma 8 that such a scope is already entered by
t. If σ(`) is a portal, then t enters the scope represented by
σ(`), and in Lemma 8, we show that such a scope is directly
contained in the previous scope entered by t.

Lemma 8 If σ, P is well-typed, safe, t[` e . ` e] ∈ P , and
` e = . . . `0 e0, then

1. if σ(`) is a scoped object, then scopeof σ(`) ∈ `,

2. if σ(`) is a portal object, then either scopeof σ(`) =
`0 if σ(`0) is a portal or scopeof σ(`) = scopeof σ(`0)
otherwise.

Proof. Since σ, P is well-typed and safe, ∃Σ such that
Σ ` visible(`, `0) and safe(σ, `0, `). The safety condition im-
plies that scopeof σ(`0) ≺σ scopeof σ(`) or `0 = scopeof σ(`).
Moreover, if the types of σ(`0) and σ(`) are C0 and C, then C

is visible from C0 which means that if C is a portal type, then
C is defined in the immediate subpackage of C0. It is easy to
show that if C is a portal type, then either scopeof σ(`) = `0
or scopeof σ(`) = scopeof σ(`0). If C is scoped, then we can
show by induction that scopeof σ(`) ∈ `.

Safe deallocation. We will show that if a scope is not
used by any thread, then the objects allocated in the scope
can be safely deallocated. We use the reset expression to
clear the fields of a portal object that represents a scope
and the reset operation will succeed if the scope is not used
by any thread. We prove in Theorem 10 that if the fields
of a portal is cleared, then no object allocated in the corre-
sponding scope is reachable in the program.

We assume that the first thread of a program always starts
from the immortal memory and by Rule (G-Spawn), a new
thread inherits the portals of its parent. Thus, if P = P ′ |
t[` e . . .], then ` corresponds to immortal memory, which
should be present in the store during the entire computa-
tion of the program. We also assume that the object that
corresponds to the immortal memory is allocated in itself.

Theorem 10 shows that in a safe program σ, P , if a portal
σ(`0) is reset successfully, then the objects allocated in the
scope represented by σ(`0) are not reachable in σ, P . Re-
call that if a scope represented by σ(`0) is not used by any
thread, then refcount(σ, `0) = 0 and if the object σ(`) is
allocated in that scope, then scopeof σ(`) = `0.

We say that ` is reachable in σ, P if either it is referenced
in a thread of P or it is in the field of σ(`′), where `′ is
reachable in σ, P .

Lemma 9 If σ, P is safe, P = P ′ | t[` e . ` e], and ` ≺σ `′,
then `′ ∈ `.

The proof is straightforward by Lemma 8.

Theorem 10 If σ, P is safe, P = P ′′ | t[` e . ` E[reset `0]],
refcount(σ, `0) = 0, σ, P ⇒ σ′, P ′, and P ′ = P ′′ | t[` e . ` E[`0]],
then the objects of σ that are allocated in the scope repre-
sented by the portal σ(`0) are not reachable in σ′, P ′.

Proof. Since refcount(σ, `0) = 0, we have `0 6∈ `, ∀t[` e] ∈
P . We will show by induction that if `′ ∈ dom(σ) is reach-
able in σ′, P ′, then `′ 6≺σ′ `, that is, `′ is not allocated in
the scope represented by σ′(`0) or its subscopes. Suppose
t[` e] ∈ P ′, ` e ∈ ` e, and `′ ∈ e. Since σ′, P ′ is safe, we
have safe(σ′) and safe(σ′, `, e). From safe(σ′, `, e), we have
` ≺σ′ scopeof σ′(`′) or scopeof σ′(`′) = `. Thus, `′ 6≺σ′ `0,
because otherwise, either ` = `0 or ` ≺σ′ `0, and from
Lemma 9, we have `0 ∈ `, which is a contradiction. Suppose
`′′ ∈ fieldσ′(`′), where `′ ∈ dom(σ) is reachable in σ′, P ′ but
`′ 6≺σ′ `0. From safe(σ′), we have `′ ≺σ′ scopeof σ′(`′′) or
scopeof σ′(`′′) = `′. If `′ ≺σ′ scopeof σ′(`′′), then by assump-
tion `′ 6≺σ′ `0, we have `′′ 6≺σ′ `0. If scopeof σ′(`′′) = `′, then
by assumption, we have scopeof σ′(`′′) 6≺σ′ `0. Furthermore,

13

if `0 6= `′, which implies `0 6= scopeof σ′(`′′), then `′′ 6≺σ′ `0.
If `0 = `′, then `′′ ∈ fieldσ′(`0) and by Rule (R-Reset), `′′ is
a new object in the field of σ′(`0) and thus `′′ 6∈ dom(σ).

6. RELATED WORK
Boyapati et al. [6] combine region-based memory manage-
ment with ownership types to statically guarantee that real-
time threads do not interfere with GC. This approach uses
lexically-scoped memory regions to allocate objects for real-
time threads. The static scopes of the regions dictate the re-
gions hierarchy and region-allocated objects are parameter-
ized by owners that are either other objects or regions. The
type ownership information and their static constraints en-
sure that objects of inner regions can only reference objects
of the same or outer regions. Since the lexically nested re-
gions only support a single thread, they define shared regions
(which may contain subregions) to allocate objects used by
multiple realtime threads. While more flexible than Scoped
Types, this approach is more invasive, requiring more pro-
gram annotations, and more complex overall.

Scoped Types also enforce a property similar to deep own-
ership [10]. A portal object encapsulates the scoped objects
allocated in the scope of the portal so that only objects of
the same scope or nested scopes are able to reference these
scoped objects. Also, with Scoped Types, the shared and
unshared scopes are treated uniformly.

Figure 6 shows how all this work fits together into a wider
context of ownership and confined types. Like Confined
Types [37, 20], this work takes an implicit approach, enforc-
ing encapsulation primarily by a set of confinement rules
that restrict language constructs, having a minimal syntac-
tic overhead. The original work on Confined Types encap-
sulated objects within (statically declared) packages. Con-
finedBeans recently extended the implicit approach so that
individual (dynamically created) objects could be the unit
of confinement [11]: Scoped Types further extend this work
to support nested (thus “scoped”) encapsulation domains.
In contrast, the explicit approach, pioneered by Ownership
Types [13], explicitly annotates types with extra informa-
tion denoting objects’ ownership: these annotations impose
a significant syntactic burden on the programmer. While
the earliest Ownership Types proposals supported nested
objects as the unit of encapsulation (“deep ownership” [12,
10]), more recent work has supported individual un-nested
objects (“shallow ownership” [1, 6]) and also per-package
ownership [38, 30].

Per Package Per Object Nested Objects
Implicit Confined Confined Scoped

Types Beans Types
[37, 20] [11] [this work]

Explicit Lightweight Shallow Deep
Confinement Ownership Ownership

Types Types
[38, 30] [1, 6, 5] [13, 12, 10]

Cyclone [19] is a type-safe language derived from C and
it supports region-based memory management. Cyclone in-

cludes dynamic regions with lexically scoped lifetimes, stack
regions and a heap region. To prevent dereferencing dan-
gling pointers, Cyclone uses types parameterized by region
names to track pointers to regions. Since the pointers to a
region may escape the scope of the region via some typing
constructs, Cyclone also annotates function types with an
effect that records the set of regions the function may ac-
cess, and a function may be called only if the regions in the
effect are alive. The regions in Cyclone are limited to single
threaded execution model. Also, the use of effects of func-
tions may not work with realtime Java, since the Java’s type
safety requirement does not allow objects to hold invalid
references even if never used. Grossman recently extended
Cyclone with a type system for preventing data races [18].

The MLKit is an implementation of ML which uses regions
and region-inference [34, 35]. One of the main difference
with the model presented here is that ML is a functional
language without built-in support for concurrency. Hallen-
berg et al. [21] compared the performance of region-based
memory management with or without copying garbage col-
lection and indicated no visible effect in memory usage when
using a weakened version of region inference that prevents
dangling reference.

Cilk [31] is a C-based language for parallel programming
and it provides stack-like allocation in a so-called cactus-
stack [3] to handle simple allocations for multiple threads.
A thread in Cilk can access its own stack allocations and the
stacks allocated by its ancestors but not the stacks allocated
by its siblings; neither can it return a pointer to an object
allocated in its own cactus-stack back to its parent. The
sharing of cactus-stacks in Cilk is created by spawning child
threads, while with Scoped Types, threads share objects by
explicitly entering a shared scope.

The dangers involved in the RTSJ programming model have
motivated Kwon et.al. to propose a restricted programming
model called Ravenscar-Java [24], based on earlier work for
Ada [8], in which memory areas can not be nested and are
single threaded. We believe that on one hand Ravenscar
does not go far enough, and on the other it throws away too
many features of the RTSJ. Ravenscar falls short in that it
does not offer a model that can be statically checked, and
it is too restrictive because we have found concurrency and
nested scopes to be essential features for expressing certain
algorithms naturally in real-time Java.

BeeBee and Rinard [2] implemented the memory manage-
ment extensions in the RTSJ and tested some benchmarks
on the implementation. They found it “close to impossible”
to develop error-free realtime Java programs without some
help from debugging tools or static analysis. Their bench-
mark results showed significant runtime overhead caused by
dynamic access checks. Palacz and Vitek [28], as well as Cor-
saro and Cytron [14] presented constant-time algorithms for
checking single parent rules and memory reference checks.
Other efficient implementations of checks include [16].

Finally, a more detailed description of the example in this
paper can be found in [29], which studies the semantics and

14

design patterns for programming in real-time Java. The
addition of the reset in the calculus is directly inspired by
the wedge thread pattern.

7. CONCLUSION
In this paper we have introduced Scoped Types, a static
programming discipline to support the kind of scoped mem-
ory management found in the Real-Time Specification for
Java. The key contribution of Scoped Types is that it stat-
ically maintains the invariants that the RTSJ checks dy-
namically, yet imposes minimal syntactic overheads upon
programmers. In particular, by statically associating scoped
objects to their defining packages, Scoped Types ensure that
incoming references are never created, eliminating the po-
tential for run-time errors caused by illegal assignment op-
erations. By modeling nested scopes with nested packages,
Scoped Types ensure that scopes will never form cycles,
again eliminating the potential for runtime exceptions to sig-
nal this error. By statically tracking the objects contained
within each scope, Scoped Types ensure that it is safe to dis-
card all the objects in a scope once the last thread has left
it. We have formalized Scoped Types within the SJ-calculus
(a variant of Featherweight Java) and demonstrated that it
avoids dangling references (from either incoming references
or object discarding) and cycles of scopes. We hope the
techniques embodied within Scoped Types may be useful in
many RTSJ applications, making real-time Java program-
ming more practical, more convenient, and more reliable.

Admittedly, Scoped Types are restrictive with respect to
reuse of existing Java classes. Library classes cannot be
directly instantiated in a scopes and, even though scoped
classes can extend existing classes, inherited methods can
not be invoked. To lift some of these restrictions, we could
use concepts such as anonymous methods [38] to allow an
object to invoke some inherited methods defined in other
packages. Also, we could use genericity to instantiate library
classes in different scoped packages. Finally we could use
ideas such as borrowed parameters [7] to enable passing such
temporary references to support some of the patterns of [29].
While all of these approaches are promising, it is not clear
how much expressive power is really needed in practice. Our
first goal for future work is thus to gain first-hand experience
using Scoped Types on real-time codes.

Acknowledgments. The authors are grateful to David
Clarke, Jason Fox, David Holmes, Doug Lea, Filip Pizlo for
assistance, comments and inspiration; the ECOOP review-
ers provided insightful comments. This work was supported
under grant HDCCSR #0341304.

8. REFERENCES
[1] Jonathan Aldrich, Valentin Kostadinov, and Craig

Chambers. Alias annotations for program
understanding. In Proceedings of the ACM Conference
on Object-Oriented Programming, Systems, Languages,
and Appplications (OOPSLA), November 2002.

[2] William S. Beebee, Jr. and Martin Rinard. An
implementation of scoped memory for real-time Java.

In Proceedings of the First International Workshop on
Embedded Software (EMSOFT), 2001.

[3] Daniel G. Bobrow and Ben Wegbreit. A model and
stack implementation of multiple environments.
Communications of the ACM, 16:591–602, 1973.

[4] Greg Bollella, James Gosling, Benjamin Brosgol, Peter
Dibble, Steve Furr, and Mark Turnbull. The
Real-Time Specification for Java. Addison-Wesley,
June 2000.

[5] C. Boyapati, B. Liskov, and L. Shrira. Ownership
types for object encapsulation. In Principles of
Programming Languages (POPL, January 2003.

[6] Chandrasekhar Boyapati, Alexandru Salcianu,
William Beebee, Jr., and Martin Rinard. Ownership
types for safe region-based memory management in
Real-Time Java. In Proceedings of Conference on
Programming Languages Design and Implementation.
ACM Press, 2003.

[7] John Boyland. Alias burying: Unique variables
without destructive reads. Software—Practice and
Experience, 2000. In this issue.

[8] Alan Burns. The Ravenscar Profile. ACM SIGADA
Ada Letters, 19(4):49–52, 1999.

[9] Dries Buytaert, Frans Arickx, and Johan Vos. A
profiler and compiler for the Wonka Virtual Machine.
In USENIX JVM’02 Work in Progress, San Francisco,
CA, August 2002.

[10] Dave Clarke and Sophia Drossopoulou. Ownership,
encapsulation and the disjointness of type and effect.
In Cindy Norris and Jr. James B. Fenwick, editors,
Proceedings of the 17th ACM conference on
Object-oriented programming, systems, languages, and
applications (OOPSLA-02), volume 37, 11 of ACM
SIGPLAN Notices, pages 292–310, New York,
November 4–8 2002. ACM Press.

[11] Dave Clarke, Michael Richmond, and James Noble.
Saving the world from bad Beans: Deployment-time
confinement checking. In Proceedings of the ACM
Conference on Object-Oriented Programming,
Systems, Languages, and Appplications (OOPSLA),
Anaheim, CA, November 2003.

[12] David Clarke. Object Ownership and Containment.
PhD thesis, School of Computer Science and
Engineering, University of New South Wales, Sydney,
Australia, 2001.

[13] David G. Clarke, John M. Potter, and James Noble.
Ownership types for flexible alias protection. In
OOPSLA ’98 Conference Proceedings, volume 33(10)
of ACM SIGPLAN Notices, pages 48–64. ACM,
October 1998.

[14] Angelo Corsaro and Ron K. Cytron. Efficient memory
reference checks for real-time Java. In Proceedings of
Languages, Compilers, and Tools for Embedded
Systems (LCTES’03), 2003.

15

[15] Angelo Corsaro and Doug Schmidt. The design and
performace of the jRate Real-Time Java
implementation. In The 4th International Symposium
on Distributed Objects and Applications (DOA’02),
2002.

[16] Jason M Fox and Adam Welc. Implementation of
Real-Time Java scope access checks for JikesRVM.
Tech. report, Purdue, may 2003.

[17] Urs Gleim. JaRTS: A portable implementation of
real-time core extensions for Java. In Proceedings of
the Java Virtual Machine Research and Technology
Symposium (JVM ’02), Berkeley, CA, USA, 2002.
USENIX.

[18] Dan Grossman. Type-safe multithreading in Cyclone.
In ACM Workshop on Types in Language Design and
Implementation, Now Orleans, LA, January 2003.

[19] Dan Grossman, Greg Morrisett, Trevor Jim, Michael
Hicks, Yanling Wang, and James Cheney.
Region-based memory management in Cyclone. In
Proceedings of SIGPLAN 2002 Conference on
Programming Languages Design and Implementation,
ACM SIGPLAN Notices, pages 282–293, Berlin, June
2002. ACM Press.

[20] Christian Grothoff, Jens Palsberg, and Jan Vitek.
Encapsulating objects with confined types. ACM
SIGPLAN Notices, 36(11):241–253, November 2001.
Proceedings of the 2001 ACM SIGPLAN Conference
on Object Oriented Programming, Systems,
Languages and Applications (OOPSLA’01).

[21] Niels Hallenberg, Martin Elsman, and Mads Tofte.
Combining region inference and garbage collection. In
ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’02).
ACM Press, June 2002. Berlin, Germany.

[22] Atsushi Igarashi, Benjamin C. Pierce, and Philip
Wadler. Featherweight Java: a minimal core calculus
for Java and GJ. ACM Transactions on Programming
Languages and Systems, 23(3):396–450, May 2001.

[23] Timesys Inc. jTime. 2003.
http://www.timesys.com.

[24] Jagun Kwon, Andy Wellings, and Steve King.
Ravenscar-Java: A high integrity profile for real-time
Java. In Joint ACM Java Grande / ISCOPE
Conference, Seattle, Washington, November 2002.

[25] NASA/JPL and Sun. Golden gate. 2003.
http://research.sun.com/projects/goldengate.

[26] Kelvin Nilsen. Adding real-time capabilities to Java.
Communications of the ACM, 41(6):49–56, June 1998.

[27] James Noble, Robert Biddle, Ewan Tempero, Alex
Potanin, and Dave Clarke. Towards a model of
encapsulation. In International Workshop on Aliasing,
Confinement and Ownership in object-oriented
programming (IWACO), 2003.

[28] Krzysztof Palacz and Jan Vitek. Java subtype test in
real-time. In Proceedings of the European Conference
on Object Oriented Programming (ECOOP03),
Darmstadt, Germany, 2003.

[29] Filip Pizlo, Jason Fox, David Holmes, and Jan Vitek.
Real-time java scoped memory: design patterns and
semantics. In Proceedings of the IEEE International
Symposium on Object-oriented Real-Time Distributed
Computing (ISORC’04), Vienna, Austria, May 2004.

[30] Alex Potanin, James Noble, Dave Clarke, and Robert
Biddle. Featherweight generic confinement. In
Informal Proceedings of FOOL 2004, 2004.

[31] Keith Harold Randall. Cilk: efficient multithreaded
computing. PhD thesis, Massachusetts Institute of
Technology, Dept. of Electrical Engineering and
Computer Science, 1998.

[32] David Sharp. Real-time distributed object computing:
Ready for mission-critical embedded system
applications. In Proceeding of the Third International
Symposium on Distribtued-Objects and Applications
(DOA’01), 2001.

[33] Fridtjof Siebert. Hard real-time garbage collection in
the Jamaica Virtual Machine. In Sixth International
Conference on Real-Time Computing Systems and
Applications (RTCSA’99), Hong Kong, 1999.

[34] Mads Tofte and Lars Birkedal. A region inference
algorithm. ACM Transactions on Programming
Languages and Systems, 20(4):724–767, July 1998.

[35] Mads Tofte and Jean-Pierre Talpin. Region-based
memory management. Information and Computation,
February 1997.

[36] Jörgen Tryggvesson, Torbjörn Mattsson, and
Hansruedi Heeb. Jbed: Java for real-time systems. Dr.
Dobb’s Journal of Software Tools, 24(11), November
1999.

[37] Jan Vitek and Boris Bokowski. Confined types in
Java. Software — Practice and Experience,
31(6):507–532, 2001.

[38] Tian Zhao, Jens Palsberg, and Jan Vitek. Lightweight
confinement for Featherweight Java. In Proceedings of
the ACM Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA’03),
pages 135–148. ACM Press, October 2003.

16

