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ABSTRACT
Image classification methods based on text utilize terms
extracted from image annotations (image caption, image-
related article, etc.) to achieve classification. For images
involving different anatomical structures (chest, spine, etc.),
however, the precision of pure textual classification often
suffers from highly complex text contents (e.g. text terms
extracted out of two MR abdomen images may be quite
different from each other: terms from one image may con-
cerns gastroenteritis while the other contains terms involv-
ing hysteromyoma). This paper tackles the anatomy image
classification problem using a hybrid approach. First, a mu-
tual information (MI) based filter is applied to select a set
of terms with top MI scores for each anatomical class and
help reduce the noise existing in the raw text. Second, local
features extracted from the images are transformed as vi-
sual descriptors. Last, a hybrid scheme on the results from
the textual and visual methods is applied to achieved fur-
ther improvement of the classification results. Experiments
show that this hybrid scheme improves the results over the
sole textual or visual method on different anatomical class
settings.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems]:
Evaluation/methodology; I.1.2 [Computing Methodolo-
gies]: Algorithms—Analysis of algorithms; I.4.10 [IMAGE
PROCESSING AND COMPUTER VISION]: Image
Representation—Multidimensional

General Terms
Algorithms, Experimentation, Performance
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1. INTRODUCTION
Advances in sensor technology, high-speed networking, and

massive digital storage are being incorporated into today’s
health care practices and biomedical researches. Tremen-
dous amounts of biomedical image data are captured and
recorded in digital format daily. These images can be cat-
egorized based on the anatomical parts they depict, such
as abdomen, lower-extremity (other categorization methods
can also be applied, e.g. the modality under which the im-
ages were acquired or the pathology observed in the image).
Being able to automatically know the anatomy information
of the image provides huge benefits in clinical practices.
The radiologists can focus on only images of the anatomy
parts that interest them; the internal/online medical im-
age anatomy category can be created/updated in a much
faster fashion; the pathological analysis can be more effi-
cient and precise when the anatomical features of the image
for a patient are provided; such information will also help
greatly when combined with other categorizations (modal-
ity, pathology, etc.) to provide an integrated medical image
retrieval system.

Despite the significant amount of work that has been put
in anatomical part classification, many problems remain un-
solved due not only to lack of high-quality anatomy-labeled
image collections for analysis, training and evaluation of
classification systems, but also to the quality of the avail-
able text information coming with these images. Most of the
existing medical image classification systems rely mainly on
textual information or patient identifications. However, the
textual information coming with the images usually contains
very few terms related to anatomical parts, making it noisy
training data for anatomical part classifiers.

This paper addresses the issues at two different levels.
First, the paper presents a highly efficient filter based on mu-
tual information (MI) [26, 27] to select terms that are highly
discriminant for anatomical part classification. Only these
terms are used to perform the classification. Second, since
some “common terms” of low discriminative power may still
remain after the first filtering step (even if they only exist
in a small subset of the total anatomical classes) and cause
some medical images continuously to be classified incorrectly



with the sole textual method, image local features are used
to overcome this drawback based on the fact that the visual
features (or more specifically, the image local components
that form the images’ main structure) of many images from
different anatomy categories are quite different against each
other while the textual components of these images appear
to share a great portion of overlapping. Our experiments
show that this hybrid method further improves the textual
classification results universally on different combinations of
anatomical classes.

2. RELATED WORK
Past researches have developed several content-based re-

trieval systems for images of specific modalities and anatomies.
Examples include systems for mammograms [1], high-resolution
CT lung images [8] and spine images [13]. There are also a
few retrieval and classification systems for general medical
images such as MedGIFT [19]. However, visual-based re-
trieval systems have generally perform poorly compared to
textual approaches [18] for general medical images acquired
under different modalities and orientations, and depicting
different anatomical structures.

Automatic medical image classification can not only im-
prove the performance of image retrieval systems, but also
provide image annotations and correct errors in the Digital
Imaging and Communications in Medicine (DICOM) head-
ers. Starting from a few years ago, the ImageCLEF compe-
tition [10] includes tasks to annotate medical images based
on their modalities, body orientations, body regions or bio-
logical systems. The training and test images provided for
these tasks are based on the IRMA project’s X-Ray images
annotated by 57 to 196 labels. Some of the best performing
runs of these competitions are based on visual bag-of-words
(BoW) models [21], which are adapted from the BoW mod-
els commonly used in text retrieval [17]. Visual BoW models
have been successfully applied to areas such as learning nat-
ural scene categories [12] and object matching in videos [21].
The visual words can be based on local image features such
as Scale-Invariant Feature Transform (SIFT) descriptors [14]
or grayscale patches (Here visual words refer words that
represent the visual features in text format). For example,
Ginneken et al. [25] achieve good results in the ImageCLEF
annotation task with a mixture of global features and SIFT-
based visual word histograms. Patch-based BoW models are
used to classify endomicroscopic images [2] and breast tissue
density in mammograms [4]. They are also effective in X-ray
image classification [7, 3]. The results reported by Avni et
al. [3] suggest that patch-based approaches can achieve sim-
ilar accuracies in classifying X-ray images as SIFT-based
BoW models, at lower computational costs.

While the classification of medical images based on IRMA
codes has been successful for X-Ray images (e.g. SVM based
schemes in [22, 24]), the results may not be generally appli-
cable to medical images of other modalities or when images
cannot be clearly classified with an IRMA code. It may
be advantageous to develop classification models separately
for modality and anatomy. Modality classification can be
used to improve the precision of medical image retrieval sys-
tems [11]. Lightweight image descriptors can be combined
with textual methods to achieve good precisions for image
modality classification [23]. This work follows a similar di-
rection by determining whether integrating visual descrip-

tors with textual descriptors can improve the performance
of anatomy-based image classifiers.

3. PROPOSED APPROACH
This section describes the MI-based feature selection method

employed, then the visual descriptors used in the experi-
ments, and, finally, how textual and visual features are in-
tegrated into a hybrid classification scheme.

3.1 Textual method

3.1.1 Mutual information
Given two random variables, MI measures how knowing

one variable reduces the uncertainty of the other. When
applied to text-based classification, MI measures the con-
tribution of term t (by its presence or its absence) to the
description of class c. Equation (1) gives the formal defini-
tion of MI for two binary random variables T and C:

MI(T,C) =
∑

et∈{1,0}

∑
ec∈{1,0}

P (T = et, C = ec)

log2
P (T = et, C = ec)

P (T = et)P (C = ec)
(1)

where T is a random variable that corresponds to the pres-
ence (et = 1) or absence (et = 0) of term t, and C is a
random variable that corresponds to the presence (ec = 1)
or absence (ec = 0) of class c, i.e. the fact that the docu-
ment containing t belongs or not to c. With maximum likeli-
hood estimations (MLEs) of the probabilities, Equation (1)
is equivalent to Equation (2) [16]:

MI(T,C) =
N11

N
log2

NN11

N1.N.1
+

N01

N
log2

NN01

N0.N.1
+

N10

N
log2

NN10

N1.N.0
+

N00

N
log2

NN00

N0.N.0
(2)

where Netec is the count of documents so that T = et and
C = ec. For example, N01 is the number of documents that
contain t(et = 0) and are not in c(ec = 1); N0. = N00 +N01

is the number of documents that contain t(et = 0) regardless
the class membership (ec ∈ {0, 1}); and N = N00 + N01 +
N10 +N11 is the total number of documents. By computing
the value MI for each term of the collection and each class,
it is then possible to obtain, for each class, the links of terms
with their contribution to the description of the class.

3.1.2 Selection of top terms
As stated in the introduction, the textual information

extracted from image annotations usually contains a large
number of noisy/useless terms for anatomical part classi-
fication, even after removing all the stop words. MI can
help to identify such terms: terms t that appear multiple
times in the annotations of the images from a single class
c will tend to have high MI(T,C) values, while terms that
appear multiple times in the annotations of the images from
multiple classes will have a low MI(T,C) values. Therefore,
those terms with high MI values (more discriminative) will
be more likely to identify an image’s anatomical class label
correctly than the terms with low MI values (less discrimina-
tive). We can hence greatly reduce the noise by limiting our
textual descriptors to the terms that have a top MI value
for at least one class. How many top terms we should use
depends on the size of the training dataset and the number



of anatomical classes with which we are working. Moreover,
since terms in the top term list of one class are likely to be
quite different from those of another class, we should select
top terms from each of the classes evenly so that the final
term set we obtained has an equal discriminative effect on
each class. We will study the results of different numbers of
top terms in the experiments.

3.2 Visual feature-based method
As indicated in [20], if we describe a 2D image based on

its entire pixel set, we will end up with too much infor-
mation. Descriptors based on local features, by opposition,
describe only regions of interest, i.e. regions that contain
significant information (changes in the 2D signal). This is
especially useful for anatomical images since many of them
only have partial visibility and contain highly informational
content. A good local feature should be highly distinctive
and reasonably invariant to image noise, illumination, scale
and rotation changes, as well as slight changes in viewpoint.
Scale Invariant Feature Transform (SIFT) [14] features meet
these requirements and are adopted in this paper for the vi-
sual classification step. Our visual part of the hybrid method
is hinted by the BoW model, which shows excellent perfor-
mance in image classification [5]. To apply the BoW model,
we extract SIFT features for a given set of images, then
apply a clustering algorithm on these features. We finally
calculate for each image the number of its features falling
in each cluster. The resultant histogram contains a set of
“visual words” that are used to describe the image. This
histogram is deemed as the basis for similarity comparison
in later visual classification.

3.3 Hybrid scheme
We combine the text-based and visual-based classifier us-

ing a linear combination as follows:

SH = WT ∗ ST + (1−WT ) ∗ SV (3)

where ST is the classification score returned by the text-
based classifier, SV is the score returned by the visual-based
classifier and SH is the hybrid score obtained from the com-
bination. WT is a parameter that controls the relative im-
portance of each classifier that must be set up manually or
optimized on a validation set. Its value will be discussed in
the next section.

4. EXPERIMENTS

4.1 Data organization
In this section, we describe the data we used and the ex-

perimental settings we adopted [6]. The dataset contains 909
anatomy images. It comes from two different resources: 534
images are selected from the ImageCLEF2010 dataset and
375 images come from a semi-automatic selection process,
i.e. retrieved from publicly available medical databases, e.g.
RSNA and EURORAD, and followed by a manual screening
process. 1 All 909 images are labeled by one of 8 anatomical
classes. The class names and the number of images in each

1This combination process is due to lack of existing anatom-
ical classification datasets in ImageCLEF. Also, we can-
not directly perform experiments on the IRMA datasets ei-
ther. This is mainly because no textual annotations have
been provided there and the IRMA datasets do not contain
enough images in some categories (e.g. cranium images)

Anatomical class # of images
abdomen 136

chest 143
cranium 144

lower-extremity 124
pelvis 76
spine 148

upper-extremity 45
whole-body 93

Table 1: The anatomy data summary

Dataset Anatomical classes
4 classes chest, cranium, lower-extremity, spine
6 classes chest, cranium, lower-extremity, spine

upper-extremity, whole-body
8 classes chest, cranium, lower-extremity, spine

upper-extremity, whole-body, pelvis
abdomen

Table 2: The anatomy types for each experiment.

class is summarized in Table 1. We split the dataset into
a training set and a test set on a 7:3 ratio. Since our goal
is to examine the improvement effect of the hybrid method
with different precisions of the sole textual method, we de-
signed three experiments with three different combinations
of classes (see Table 2) where the classification precisions
by the sole textual method decrease while more classes are
added. This decrease in precision is due to the fact that
the newly added anatomical classes contain more noise than
others, e.g. the whole-body class contains more noisy terms
than other classes.

4.2 Textual classification steps
In each experiment, we created a term score file per anatomy

type (from the training dataset after removing the stop words)
which gives the list of terms in the descending order of their
MI scores. We then performed an incremental process which
selects the top N terms (the first N terms with the highest
MI scores) from each score file per anatomy type in each loop
where N = 5 . . . 100 with step value of 2 2. For example, in
the case of 4 anatomical classes, we started from 5× 4 = 20
top terms and went all the way up to 100 × 4 = 400 top
terms. Again, terms with high MI values will be more likely
to identify an image’s anatomical class label correctly than
the terms with low MI values. e.g. from our experiments,
the terms with top five MI scores in the cranium anatomi-
cal class are: cranial, fossa, maxillary, skull, sinus, while the

that we concern about. Furthermore, IRMA datasets con-
sist mainly of X-ray images and the lack of other modality
information (e.g. nuclear imaging) may cause the classifica-
tion work more restrictive and less practical.
2From our experiment observation, the textual feature based
method gives low enough precision when more than 100 fea-
tures are used such that it is not of interest any more whether
the visual feature based method can improve its performance
(e.g. a pretty impressive improvement of 50% via adding
the visual method on a textual method-based precision 40%
would be 60% and is still too low to be worth any further
investigation).



Figure 1: The effect of the number of top terms per
anatomy on the classification precision.

terms with top five MI scores in the lower-extremity cate-
gory are: tibial, extremity, lower, popliteal, lower-extremity.
Clearly, How frequent such terms appear in an image’s anno-
tation provides strong indication of the anatomical class of
the image. Based on these top terms, we construct two class
files, for training set and test set respectively, per anatomy
type by removing terms that are not in the top term list.
Finally, we count the total number of each term (which
gives the frequency of the term appearing in the image’s
annotation) from the reduced annotation in the class files
and use these numbers as the final text feature values for
classification. We applied a SVM-based classifier, the Weka
SMO classifier [9], programmatically throughout the classifi-
cation tasks. Experiment results for the three combinations
of anatomical classes from Table 2 are illustrated in Figure 1.
We can easily see that, for all three experiments, the total
trend of classification precisions starts increasing while more
top terms were used due to more strong (highly discrimina-
tive) terms work for classification and reaches some peak
value; then decreases while more weak terms were added.
We also observe that the good number of top terms (to help
achieve high precisions) used per anatomy for all experi-
ments are roughly in the range [9,69] and the best precisions
were achieved with [15,25] top terms per anatomy.

4.3 BoW on image local features
We compute the visual BoW of all images following the

method described in Section 3.2. We use a modified ver-
sion of k-means from the Lire library [15] to group the SIFT
features (extracted with the Lire SIFT builder) into 256 clus-
ters. The results of applying the visual method on the dif-
ferent combinations of classes from Table 2 are listed in the
visual column in Table 3 (i.e. 87.65%, 79.72%, and 63.77%
for 4, 6, and 8 anatomical classes respectively). Now we want
to combine the two methods to achieve better classification
results, following the method presented in Section 3.3. We
apply a weighted average method as shown in Equation-3
to combine the textual and visual methods with the weight
slightly favor the textual method since it provides higher
precision than what is achieved by the visual method in
many cases. The motivation is from our observation that
the local features of many images can be used to identify
their anatomical class with better precision in the case that
top text terms extracted from these images are not so dis-

Figure 2: The improvement achieved by the hybrid
method comparing to the results of the textual &
visual method with different number of top terms
per anatomy used.

tinctive for classification. In other words, the information
provided by the textual method can be strengthened with
the information provided by the visual method.

The WEKA SMO SVM implementation provides the clas-
sification scores ST and SV respectively obtained by the
text-based and visual-based classification. Using Equation 3,
the value of SH is computed for each class and the class that
maximizes SH is assigned to the current test image.

It must be noted that there is not any ”best-for-all”weight
value WT that can be used for all datasets. Indeed, the opti-
mal value of WT relies on the relative performance of the two
classifiers that may change on datasets of different complex-
ities. Ideally, this parameter should then be optimized on
a validation set to ensure optimal results. However, this is
difficult in practice, given the limited amount of data avail-
able. Therefore, we just tested different values of WT in the
range [0.5, 0.99]. In the remaining of the experiments, we
report only the results observed with the optimal value of
WT that we found: 0.51 for the 4-classes dataset, 0.67 for
the 6-classes one and 0.76 for the 8-classes one.

4.4 Results and discussion



Figure 3: The improvement in % achieved by the hy-
brid method over the results of the textual method
with different number of top terms per anatomy
used.

Anatomical Weight Terms Textual Visual Hybrid
classes

4 0.51 15 91.18% 87.65% 93.53%
6 0.67 23 88.21% 79.72% 88.68%
8 0.76 21 83.33% 63.77% 84.06%

Table 3: Effect of hybrid method on the best results
achieved by the textual method solely.

We report the classification results we obtained against
different combination of anatomical classes in this section.
Before we move forward, there are two things we want to
examine when we test the hybrid method.

1. Can the hybrid method improve the best result from
the sole textual method?

2. Can the hybrid method greatly improve a relatively
low precision achieved when the textual method is ap-
plied solely?

The first one concerns the question of whether the visual
method can break the bottleneck faced by the textual meth-
ods while the second one involves a more important question
of whether the visual method can compensate positively the
poor results obtained by the sole textual method due to the
unavailability or bad quality of the image text information.
To answer the above two questions, we designed two dif-
ferent set of experiments. In the first set of experiments,
we combined the results of the visual method with the best
results from the textual method; in the second set of ex-
periments, we combined the results of the visual method
with some poor classification precisions achieved by the tex-
tual method. For the first set of experiments, we recorded
the new precisions achieved by the hybrid method and sum-
marized the results in Table 3 where the “Weight” column
provides the number of top terms per anatomy with which
the best result was achieved by the textual method. For
the second set of experiments, we kept the same weight val-
ues 0.51, 0.67, and 0.76 for 4, 6, and 8 anatomical classes
cases, respectively. We then illustrated the improvements
(in percentage format) achieved by the hybrid method over
the textual method when different number of top terms per

Figure 4: The images from Table 4.

anatomy type are used. The results are summarized in
Figure 2 and Figure 3. We can see from the figures that
the hybrid method almost universally improved the results
from the textual method. In fact, except one zero improve-
ment case in the 8 anatomical classes experiment and two
slight drops of -1.08% and -0.54% on the precisions in the
6 anatomical classes case, the rest are all positive improve-
ments. Also, we observe that with some reasonable number
of top terms per anatomy (5∼61, etc.) selected, the results
of the hybrid method outperforms both the textual and vi-
sual methods. Another observation from our experiments is
that the incorrectly classified images by the textual method
are quite different from the ones by the visual method. This
is why a good hybrid scheme can help improve the classifica-
tion precision. Table 4 illustrates how the visual method fur-
ther improved the best result from the sole textual method
in the 4 anatomical classes case (The images are displayed
in Figure 4). We can see that the hybrid method success-
fully corrects the misclassification for the first five images
while misclassified only the last image where the sole tex-
tual method did correctly. This error occurs for two reasons.
First, the image is a close-up of a patient’s kneecap and has
some “local features” that also appear in the cranium images
frequently; second, the textual method gives a second high-
est probability to cranium type even the highest probability
is given to the correct anatomical class lower-extremity; this
causes the weighted average votes cranium as the result.

5. CONCLUSIONS
We have presented a new hybrid method for the classifica-

tion of medical anatomy images in this paper. The textual
part of this hybrid method removes poorly distinctive terms
from the annotations to achieve a higher classification preci-
sion while the visual part further improves the results from
the textual method using a SIFT-based visual BoW model.
Experiments show strong improvements on datasets of med-
ical images containing up to 8 anatomical classes. Since the
textual and visual classifier can be trained separately, we
next plan to apply the IRMA images directly to train the
visual classifier and examine the classification effect of the
resultant classifier on the textual method.
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