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Abstract—Multimedia Information Retrieval (MIR) is a prob-
lem domain that includes programming tasks such as salient
feature extraction, machine learning, indexing, and retrieval.
There are a variety of implementations and algorithms for
these tasks in different languages and frameworks, which are
difficult to compose and reuse due to the interface and language
incompatibility. Due to this low reusability, researchers often
have to implement their experiments from scratch and the
resulting programs cannot be easily adapted to parallel and
distributed executions, which is important for handling large
data sets.

In this paper, we present Pipeline Information Retrieval (PIR)
– a domain specific language for multi-modal feature manip-
ulation. The goal of PIR is to unify the MIR programming
tasks by hiding the programming details under a flexible layer
of domain specific interface. PIR optimizes the MIR tasks by
compiling the DSL programs into pipeline graphs, which can be
executed using a variety of strategies (e.g. sequential, parallel,
or distributed execution). We evaluated the performance of
PIR applications on single machine with multiple cores, local
cluster, and Amazon Elastic Compute Cloud (EC2) platform.
The result shows that the PIR programs can greatly help
MIR researchers and developers perform fast prototyping on
single machine environment and achieve nice scalability on
distributed platforms.

Keywords-DSL; pipeline; multimedia information retrieval;
parallel programming; Scala

I. INTRODUCTION

Multimedia Information Retrieval (MIR) (Datta, Joshi, Li,
& Wang, 2008; Lew, 2012; Lew, Sebe, Djeraba, & Jain,
2006; Yoshitaka & Ichikawa, 1999) refers to the research en-
deavor that centers on searching knowledge from multimedia
data. In the last decades, substantial progress has been made
in different area of MIR research, such as multimedia feature
extraction (Hu, Xie, Li, Zeng, & Maybank, 2011; Tuytelaars
& Mikolajczyk, 2008), learning and semantics (Atrey, Hos-
sain, El Saddik, & Kankanhalli, 2010; Clinchant, Ah-Pine,
& Csurka, n.d.; Wang & Hua, 2011), and high performance
indexing and query (Moise, Shestakov, Gudmundsson, &
Amsaleg, n.d.; Scherp & Mezaris, 2013; Shestakov, Moise,
Gudmundsson, & Amsaleg, n.d.; Mohamed & Marchand-
Maillet, 2012). As shown by recent surveys (Datta et al.,
2008; Lew, 2012; Lew et al., 2006; Yoshitaka & Ichikawa,
1999), since the year 2000, the MIR research efforts have
grown tremendously in terms of the number of researchers

and practitioners involved, as well as the research papers
published.

As a result of substantial progress of MIR research and
applications, many related software packages, libraries, and
systems have been developed and evaluated using a wide
range of multimedia data. Some prominent examples include
the GIFT (the GNU Image-Finding Tool) (CVML, 2007),
FIRE (the Flexible Image Retrieval Engine)(Deselaers et al.,
2010), Caliph & Emir (Lux, 2009), LIRE (Lucene Image
Retrieval) (Savvas & Chatzichristofis, 2008), ImageTerrier
(Hare, Samangooei, Dupplaw, & Lewis, n.d.), and OpenI-
MAJ (Open Intelligent Multimedia Analysis toolkit for Java)
(Hare, Samangooei, & Dupplaw, n.d.). While significant
progress in both MIR research and software development
have been made, in practice, we have witnessed that code
reuse and system composition for MIR research are still
very difficult and the new system developed on top of ex-
isting MIR implementation are not optimized for efficiency
and cannot be easily adapted for parallelization, which is
essential for handling large multimedia data sets. There are
often steep learning curves for researchers to understand and
appropriately use existing libraries for their needs. Moreover,
a lot of components of the MIR software libraries are
sequential programs that are designed to run on shared-
memory computer architectures. MIR experiments of large
data sets are time consuming and resource intensive; they
often take hours to days to complete and some may even
fail after exhausting main memory.

Recent development of distributed computing platforms
such as Cloud-based services provides great opportunity to
reduce runtime cost of large MIR experiments. A Cloud-
based service such as Amazon EC2 allows users to dis-
tribute workload to many worker nodes, thereby reducing
the runtime costs for data parallel applications. However,
it is not easy to develop MIR applications and deploy
them on distributed platforms. An example of this would
be to implement a MIR application using a MapReduce
framework such as Hadoop and then deploy the application
on a distributed computing platform. This presents several
challenges to the developers. Firstly, they are often required
to have a good understanding of the distributed framework
interface they are working with. They need to not only grasp



the appropriate usages of different distributed programming
artifacts but also understand how to deploy the application on
the distributed computing environments that mostly demand
platform-specific configurations, settings, and performance
tuning. Secondly, They frequently need to adapt the se-
quential MIR libraries to run in distributed settings where
subtle errors such as race conditions can arise. For example,
if a user runs some parallel data processing task using
several worker nodes while the task program calls a MIR
library component that writes to a static variable, a race
condition will form if subsequent computation depends on
the variable. Lastly, developers often need to write different
versions of code (e.g. sequential vs. shared-memory parallel
vs. distributed-memory parallel) for the same tasks for
performance comparison. The different versions involve a
lot of boilerplate code duplication, system configuration, and
troubleshooting. In other words, users are forced to spend
a large amount of time on non-domain-specific work that
greatly reduces research productivity.

To address these problems, we introduce Pipeline In-
formation Retrieval (PIR) language, a DSL for developing
MIR applications. PIR is an embedded DSL using Scala
(cf. http://scala-lang.org/) as the host language: the DSL
programs are plain Scala programs and the DSL compiler
and runtime are Scala libraries. Users can construct MIR
applications with simple DSL constructs that focus more
on the high-level logic of the MIR application and less
on the implementation details for resource management,
optimization, and parallelization. PIR provides an abstrac-
tion layer over the concrete implementations of various
MIR algorithms for feature extraction, machine learning,
indexing, and query. This layer separates the construction
of a MIR workflow from its execution so that users can
choose optimal execution strategies with minimal changes
to the program source. Since PIR is embedded in Scala, it
is able to utilize the type system of Scala to ensure that DSL
programs are well-typed. That is, if a PIR program compiles
in Scala, then it will execute according to the DSL semantics.
The execution of a PIR program includes two stages. In the
first stage, the PIR program is “compiled” into a pipeline
graph through a Scala library. In the second stage, the
pipeline graph is executed either sequentially, as a shared-
memory parallel program, or on a distributed platform. The
construction of the pipeline is separated from its execution
to enable flexible execution strategies. For instance, users
can use sequential execution to test the correction of an
application and use parallel or distributed strategy for better
performance. PIR runtime handles the details of deploying
the applications on a distributed platform (e.g Amazon
EC2) using a MapReduce framework (e.g. Spark (Zaharia,
Chowdhury, Franklin, Shenker, & Stoica, 2010)).

In summary, this paper presents the design and im-
plementation of a DSL for writing MIR programs using
simple language constructs. This DSL abstracts away the

implementation details of MIR algorithms to enable rapid
prototyping of MIR applications and allows users to ap-
ply various runtime strategies with minimal change to the
program source. Users of the DSL can focus more on the
application logic of MIR programs and resulting programs
are more readable and reusable.

In the rest of the paper, we first explain the background
of multimedia retrieval and the motivation of PIR language
in Section II. We then give an informal presentation of PIR
language in Section III using examples. The formal syntax
and semantics of the language are covered in Section IV,
V, and VI. We include some details of our implementation
in Section VII and the results of our experiments in Sec-
tion VIII. The related works are in Section IX.

II. MULTIMEDIA INFORMATION RETRIEVAL

Due to the complication of MIR applications, it is often
the case that MIR applications utilize multiple libraries to
implement their workflows.

A typical MIR workflow starts with extracting salient
features from multimedia objects such as text documents,
images, and videos. After the feature extraction, some MIR
algorithms may require applying machine learning algo-
rithms to discover latent semantics within the features and
use the results to transform the extracted features. MIR
workflows for large data sets may also index the extracted
features for better performance. For evaluation, many MIR
workflows include query tasks to retrieve multimedia objects
similar to query objects from indices or feature sets.

For example, the LIRE library is a Content-Based Image
Retrieval (CBIR) library that implements multiple image
analysis algorithms to extract global features based on color,
edge, and texture, and local features such as Scale-Invariant
Feature Transform (SIFT) (Lowe, 2004), Speeded Up Robust
Feature (SURF) (Bay, Tuytelaars, & Van Gool, 2006), and
Maximally Stable Extremal Regions (MSER) (Matas, Chum,
Urban, & Pajdla, 2004). Image retrieval can be based on
the similarity of image features. It can also be based on
the bag-of-visual-word approach, where features of training
images are clustered into centroids (visual words) and the
features of images are converted to histograms of visual
words. LIRE uses Lucene library to index the image features.
LIRE’s indexing implementation is rather simple and it
translates image features or visual word histograms into
Lucene documents for indexing in Lucene engine, which
can be inefficient. Thus, if better performance is needed for
indexing multimedia data, Libraries such as ImageTerrier
should be used. Also, LIRE provides limited support for ma-
chine learning such as K-Means (Hartigan & Wong, 1979)
and Latent Semantic Analysis (LSA) (Dumais, 2004). If
more sophiscated machine learning algorithms, e.g. as Latent
Dirichlet Allocation (LDA) (Blei, Ng, & Jordan, 2003), are
needed, then other libraries such as MALLET (McCallum
& Kachites, 2002) must be included as well.



Using multiple libraries in a MIR application complicates
development effort. Each MIR library has its own API
for MIR data representation. A MIR application that uses
multiple libraries needs to include glue code to convert
of results from one library to another. Also, each library
has its own API for MIR tasks such as feature extraction
and machine learning. Mixing these APIs in an application
obscures the main logic of the application, which makes
the application difficult to understand and less reusable.
In addition, most MIR libraries are sequential programs.
Mixing libraries directly in a MIR application increases the
workload for implementing parallel or distributed solutions.
A lot of development time is wasted on adapting sequen-
tial programs to parallel execution and on deployment to
distributed computing platforms.

III. PIPELINE INFORMATION RETRIEVAL LANGUAGE

PIR is designed to address the above problems by provid-
ing language-based abstractions for multimedia data repre-
sentation and manipulation. PIR serves the purpose of glue
code that allows users to access functionalities in multiple
MIR libraries without knowing the specifics of the libraries.
PIR also provides runtime support that can switch between
different execution strategies without modifying the source
program.

PIR provides API functions for invoking the implemen-
tations of MIR tasks in libraries. Examples of the API
functions are listed in Figure 1. Users can construct MIR
workflows using high-level PIR constructs and the API
functions. The API functions implement common interfaces
that represent common MIR tasks that include data loading,
feature extraction (transformation), machine learning, index-
ing, and querying. Users can also implement their own API
functions for new MIR tasks or new libraries. PIR provides
operators to assemble these API functions into pipeline-
based workflows.

A. Examples

We demonstrate the usage of PIR with examples written
in a simplified syntax (detailed in Section IV). The actual
programs include slightly more details such as parameters.

Listing 1 is an example for image retrieval using two
global image features: Color and Edge Directivity Descrip-
tor (CEDD) (Chatzichristofis & Boutalis, 2008a) and Fuzzy
Color and Texture Histogram (FCTH) (Chatzichristofis
& Boutalis, 2008b). This example uses PIR operators
and API functions for MIR operations. For example,
load("index_image") loads images from the file path
index_image. In img.connect(f_cedd), the loaded
images are connect to a projection function f_cedd, which
extracts CEDD features from images. Also, index operator
creates a Lucene index using f_luceneIdx and the ex-
tracted features, while query operator applies the function
f_weightedQuery to the index and query features.

API functions MIR functionality
f cedd CEDD feature extraction
f fcth FCTH feature extraction
f gabor Gabor feature extraction
f colorLayout color layout feature extraction
f sift SIFT feature extraction
f ldaProj LDA topic histogram
f cluster clustering histogram
f transmedia transmedia projection
f ldaTrain LDA training
f kMeansTrain K-Means clustering
f ccaTrain CCA training
f luceneIdx Lucene indexing
f weightedQuery joint query with weights
f distance distance between features

Figure 1: Examples of API functions in PIR

Listing 1: Image Query Example

1 val img = load("index_image")
2 val qImg = load("query_image")
3
4 val idx = index(f_luceneIdx,
5 img.connect(f_cedd),
6 img.connect(f_fcth))
7 val q = query(f_weightedQuery, idx,
8 qImg.connect(f_cedd),
9 qImg.connect(f_fcth))

10 q.collect

The first 4 statements in Listing 1 construct a pipeline
graph with each vertex of the graph corresponds to an op-
eration such as image loading, feature extraction, indexing,
and querying. The actual computation is delayed until the
last statement q.collect, which executes the pipeline
graph using parallel threads to answer the query q. Delayed
execution allows the DSL runtime to manage how to execute
the function of each pipeline vertex and how the intermediate
results of the vertex are stored and reused. In this example,
the image loading, feature extraction, and indexing vertices
are run in parallel. The caching of the intermediate results
is automatic so that they can be stored in memory if they
fit, otherwise file system will be used for storage purpose.

The API functions such as f_cedd, f_fcth, and
f_luceneIdx are thin wrappers for the implementations
adapted from the MIR libraries. Users can expand the
capability of the DSL by defining similar functions with
appropriate type signatures.

The second example (Listing 2) illustrates a transmedia
multi-modal retrieval experiment that uses a train oper-
ator to apply training algorithms such as LDA, K-Means,
and Canonical Correlation Analysis (CCA) (Thompson,
2005) algorithm to text and image data. The variable
lModel corresponds to a pipeline that trains a LDA topic



distribution model from text using the training function
f_ldaTrain. The variable kModel corresponds to a
pipeline that applies K-Means clustering algorithm using
the function f_kMeansTrain to siftImg, which is a
pipeline for extracting SIFT features from images. The
CCA model (line 9) is trained on topic distributions of text
(line 10) and clustered image features (line 11). Note that
txt.connect(f_ldaPrj, lModel) is a pipeline that
converts text into LDA topic distribution histogram based on
the LDA topic model obtained from lModel. This example
applies query image to the trained CCA model to obtain the
related text documents.

PIR allows the definition of reusable pipelines. For exam-
ple, the variable f is a reusable pipeline that extracts SIFT
features from images, transforms the features to a histogram
of K-Means centroids, and then uses a CCA model to obtain
related text files. The variable p is a pipeline that loads a
query image and then connects to f to obtain the intended
text files. Similar to the first example, the actual computation
does not start until the last statement p.collect.

Listing 2: Transmedia Query Example

1 val txt = load("training_text")
2 val img = load("training_image")
3 val qImg = load("query_image")
4
5 val siftImg = img.connect(f_sift)
6 val lModel = train(f_ldaTrain, txt)
7 val kModel = train(f_kMeansTrain, siftImg)
8
9 val ccaModel = train(f_ccaTrain,

10 txt.connect(f_ldaPrj, lModel),
11 siftImg.connect(f_cluster, kModel))
12
13 val f = f_sift.connect(f_cluster, kModel)
14 .connect(f_transmedia, ccaModel)
15
16 val p = qImg.connect(f)
17 p.collect

We can make changes to the pipeline graph and then
run the query again. For example, the following statements
changes the file path for the text files and then run the
projection p again.

txt.f = "training_text2"
p.collect

PIR’s runtime semantics detectes change propagation such
that after the second call to p.collect, the intermediate
results of pipeline vertices that depend on txt, such as
lModel, ccaModel, and p, are recomputed while the
results of other vertices, such as siftImg and kModel,
are reused.

The last example (Listing 3) implements the Series Fea-
ture Aggregation (SFA) algorithm (Zhang & Ye, 2010),
which involves sorting and filtering of images based on
image features. The SFA algorithm applies multiple filters
to a set of images in sequence, where each filter is based

on the similarity of visual features to a query image. The
irrelevant images are removed after applying each filter and
the remaining images are collectively described as similar
to the query image by all visual features.

In Listing 3, the variables colorDist, ceddDist,
and gaborDist are composite pipelines that compute
the distances of images to a query image based on Color
Layout Descriptor (CLD) (Manjunath, Ohm, Vasudevan, &
Yamada, 2001), CEDD, and Gabor (Manjunath et al., 2001)
features respectively. The variable img2 is the pipeline that
connects the loaded images img1 to a filter function, which
is the result of applying a high-order function f_top to a
list of image IDs. The argument to f_top is an expression
(line 10–12) that computes the distance of input images
to the query image based on color distribution features,
sorts the image IDs based on distances in ascending
order, and keeps the top 2000 image IDs through the call
take(2000). Note that we need to invoke collect on
img1.connect(colorDist).sort("ascending")
to trigger its computation so that we can pass the actual
list of image IDs to the function f_top. The function
f_top returns a boolean function that evaluates to true for
an image argument if the image’s ID is among the list of
IDs passed to f_top. This function is not a PIR language
primitive so that its argument should be an actual value
instead of delayed computation (i.e. a pipeline).

The variables img3 and img4 are pipelines that filter
the results of img2 and img3 respectively using CEDD
and Gabor feature distances. The final results are obtained
after the call img4.collect.

Listing 3: Series Feature Analysis Example

1 val img1 = load("images")
2 val colorDist = f_colorLayout.connect(
3 f_distance("q_img", f_colorLayout))
4 val ceddDist = f_cedd.connect(
5 f_distance("q_img", f_cedd))
6 val gaborDist = f_gabor.connect(
7 f_distance("q_img", f_gabor))
8
9 val img2 = img1.filter(f_top(

10 img1.connect(colorDist)
11 .sort("ascending")
12 .collect.take(2000)
13 ))
14 val img3 = img2.filter(f_top(
15 img2.connect(ceddDist)
16 .sort("ascending")
17 .collect.take(500)
18 ))
19 val img4 = img3.filter(f_top(
20 img3.connect(gaborDist)
21 .sort("ascending")
22 .collect.take(100)
23 ))
24 img4.collect

Next we explain the formal syntax and semantics.



s ::= Statement
val x = e assignment

| x.f = f update
| s; s′ sequence
| e.collect execution

e ::= src | drain | p Expression
src ::= load(f) load source

| src.connect(p) source pipe
| src.sort(f) sort
| src.filter(f) filter

p ::= proj(f) projection
| proj(f, e) projection with model
| p.connect(p′) projection pipe

drain ::= train(f, src) model
| index(f, src) index
| query(f, ei, eq) query

f functions and parameters

Figure 2: Pipeline DSL Language Syntax

IV. SYNTAX

The formal DSL syntax is described in Figure 2, where
a program consists of a sequence of statements and each
statement is a variable declaration, and an update, or an
execution. Each variable declaration associates an expression
with a local variable. An update statement replaces the file
path of a file loading operation. The execution statement
in s; e.collect triggers the execution of the pipeline graph
compiled from s and e and outputs the results of the vertex
compiled from e. The expressions include source, drain,
and projection (denoted by meta variable p) expressions.
A source expression is either a load or a a source pipe
expression. A load expression loads the raw data files from
a file path and we use a function f to represent the load
operation with path to the data file embedded in f . A source
pipe expression is a composite of a source expression with
a projection expression that transforms the data from the
source to a different form. For example, we can implement
the SIFT feature extraction from images using a source pipe
with a load expression to provide the raw image files and a
SIFT extraction function as the projection.

A projection expression is either a direct projection (that
may require a model) or a composite projection expression
(projection pipe). The projection expression transforms input
data using a function and it may take a model expression
as a second parameter. The projection expressions represent
the extraction of features such as global/local features of
images and term frequency histograms of text documents,
The second type of pipe expression is for extracting features
such as the LDA topic distribution, which requires a LDA
topic model obtained from training. A projection pipe can

be used for composition of several transformations.
The drain expressions include model, index, and query.

The model expression represents the training of a model.
Index and query expressions represent the index and query
operations. Each of the drain expression takes a function
as the parameter. The model expression uses its second
parameter as training data. The index expression creates an
index for its second parameter. The query expression takes
an index ei and a query input eq to compare against the
index.

Note that though not shown, the concrete syntax we
have implemented allows more general cases such as
index(f, e1, . . . , en) to index several types of data. Also
note that with the use of implicit conversion functions
in Scala, we can omit proj. For example, in the table
below, the expressions on the left are implicitly converted
to expressions on the right.

PIR expression Result of implicit conversion
img.connect(f_sift) img.connect(proj(f_sift))
txt.connect(f, model) txt.connect(proj(f, model))
f_sift.connect( proj(f_sift).connect(
f_cluster, kModel) proj(f_cluster, kModel)

V. FROM DSL TO PIPELINE GRAPH

In this section, we describe the pipeline graph that a
DSL program is compiled to and the compilation process.
For brevity, we omit the semantics for filtering and sorting,
which are treated as special cases of the projection opera-
tions.

A. Pipeline Graph
In order to execute the DSL program using flexible

runtime strategy, we first compile the DSL program to a
pipeline graph with vertices connected through their fields.
Each vertex is an instance of the type V as described below.

v ∈ V Vertex
V ::= Vl(f) load source

| Vsp(s, p) source pipe
| Vpp(l, r) projection pipe
| Vp(f) projection
| Vpm(f, t) projection with model
| Vi(f, s) indexing
| Vt(f, s) training
| Vq(f, i, q) query

The fields of each vertex type are shown above. Specifically,
the load-source vertex type Vl(f) has a field f to store the
function (and file path) for loading source files. A source
vertex is either Vl or Vsp. A projection vertex can be Vp,
Vpm, or Vpp. Vsp(s, p) is a source pipe with s stores the
incoming source vertex and p stores the projection vertex.
Vpp(l, r) is a projection pipe with l and r being the left and
the right projection vertex respectively. Vi(f, s) stores the
indexing function in f field and source vertex in s field.
Vt(f, s) stores the training function in f field. Vq(f, i, q)



stores the querying function in f field, index vertex in i,
and query vertex in q. Each vertex except that of projection
types uses a field data to store the intermediate or final
results computed at the vertex. The data field of a load-
source vertex is reset to null if its field f is updated.

B. Compilation

We define a denotational semantics as shown in Figure 3
to describe the compilation of a DSL program into a pipeline
graph. The semantics includes compilation rules for each
type of expression e and statement s. Each expression rule
in Figure 3 is written as JeKσ = v and each statement rule
is written as JsKσ = σ′. The expression rule states how an
expression is reduced to a vertex given a runtime state σ that
maps variables to vertices. The statement rule states how a
statement changes a state to another. In the rules, a new
vertex is created in v = new V (f), where V is the type of
the vertex v and f is the function assigned to v.f . In the
constructor of V , we initialize v.data to null.

The compilation of a program s is written as JsK∅ = σ
that transforms an empty initial state to σ. To see how an
execution statement e.collect triggers actual computation,
notice that the antecedent of Rule (Exec), RUN(v), is a call
that starts the execution of the vertex v reduced from e
compiled from the previous statements and e. The call of the
form RUN(v) can be implemented using various strategies
explained in the next section.

VI. EXECUTION OF THE PIPELINE GRAPH

In this section, we describe the strategies for executing
a pipeline graph: RUN(v). We first describe a sequential
strategy.

A. Seqential execution with caching

The execution results of each vertex are implicitly cached
so that RUN∗(v) in Figure 4 checks whether we should run
the computation at vertex v via the call run?(v) before
proceeding with the actual computation RUN(v). The call
run?(v) returns true either when the data cache of v (if
exists) is null or when computation is required for the
vertices that v depends on.

For simplicity, we use the notation vx to represent vertex
of the type Vx for all subscript x. For example, vl represents
a vertex of type Vl. The execution of the pipeline graph
is demand driven. We don’t execute the computation of a
vertex if it is not triggered by an execution statement in
the DSL program. For each of the vertex type, we execute
its computation by applying its embedded operation f via
calling its app method. If f requires inputs from upstream
vertices, we execute these vertices first and then pass their
data to f .

For example, the execution of a source pipe vertex vsp
triggers the execution of its source vertex RUN∗(vsp.s) and
its projection vertex RUN∗(vsp.p), which may use their

Expression constructs

J K : Exp→ (State→ V ertex)

JxKσ = σ(x) Jload(f)Kσ = new Vl(f)

Jproj(f)Kσ = new Vp(f) Jproj(f, e)Kσ = new Vpm(f, JeKσ)

Jtrain(f, e)Kσ = new Vt(f, JeKσ)

Jindex(f, e)Kσ = new Vi(f, JeKσ)

JeiKσ = vi JeqKσ = vq

Jquery(f, ei, eq)Kσ = new Vq(f, vi, vq)

JeKσ = vs vs ∈ Vl | Vsp Je′Kσ = vp

Je.connect(e′)Kσ = new Vsp(vs, vp)

JeKσ = vp vp ∈ Vp | Vpm Je′Kσ = v′p
Je.connect(e′)Kσ = new Vpp(vp, v

′
p)

Statement constructs

J K : Stmt→ (State→ State)

JeKσ = v

Jx = eKσ = σ[x 7→ v]
Asgn

Jx.f = f ′Kσ = σ[x 7→ σ(x)[data 7→ null, f 7→ f ′]] Upd

JsKσ = σ′ Js′Kσ′ = σ′′

Js; s′Kσ = σ′′ Seq

JeKσ = v RUN(v)

Je.collectKσ = σ
Exec

Figure 3: Compilation of DSL program to pipeline graph

cached results. Afterwards, we apply the projection vsp.p
to the data of vsp.s via calling vsp.p.âpp(vsp.s.data). As
shown in Figure 4, the âpp method has different behavior
depending on the type of vsp.p.

B. Data parallel execution

PIR programs can take advantage of parallel and dis-
tributed computing architectures such as Cloud services for
better performance. To support this, we modify the previous
runtime strategy to support data parallel execution of the
pipeline graph. The projection operations in our pipeline
graph are natural candidates for data parallel execution since
the source data can be divided into several portions with each
portion being transformed independently.

To execute RUN(v) in parallel, we modify the operation
vsp.data← vsp.p.âpp(vsp.s.data) as follows:

1) Divide vsp.s.data into n segments.
2) Spawn k worker threads and put them in an available

worker pool, where k ≤ n.



Runtime semantics of vertices.

RUN∗(v) =

{
RUN(v) if run?(v)
∅ otherwise

RUN(vl) = {vl.data← vl.f.app()}

RUN(vt) = {RUN∗(vt.s); vt.data← vt.f.app(vt.s.data)}

RUN(vi) = {RUN∗(vi.s); vi.data← vi.f.app(vi.s.data)}

RUN(vq) = {RUN∗(vq.i); RUN∗(vq.q);
vq.data← vq.f.app(vq.i.data, vq.q.data)}

RUN(vpp) = {RUN∗(vpp.l); RUN∗(vpp.r)}

RUN(vp) = ∅ RUN(vpm) = {RUN∗(vpm.t)}

RUN(vsp) = {RUN∗(vsp.s); RUN∗(vsp.p);
vsp.data← vsp.p.âpp(vsp.s.data)}

Test whether to run a vertex.

run?(v) = (v .data == null) ∨ ∃v ′ ∈ depd(v). run?(v ′)

depd(vpm) = {vpm .t}

depd(vpp) = {vpp .l , vpp .r}

depd(vi) = {vi .s}

depd(vt) = {vt .s}

depd(vq) = {vq .i , vq .q}

Apply the operations in projection vertices

vp.âpp(d) = vp.f.app(d)

vpm.âpp(d) = vpm.f.app(d, vpm.t.data)

vpp.âpp(d) = vpp.r.app(vpp.l.app(d))

Figure 4: Execution strategy with caching

3) For each unprocessed data segment d, take a worker
w from the pool and start processing task for d using
w. After the task is completed, save the data in the
local cache and return w to the pool.

4) Repeat previous step until the data segments have all
been processed.

If we use a high-level distributed framework such as Map-
Reduce, the actual management of the worker threads will be
delegated to the framework implementation such as Hadoop
or Spark.

VII. IMPLEMENTATION DETAILS

In general, we can choose any host language to embed
PIR. Practically, the Scala language is a good choice as it
provides advanced features, such as lazy evaluation, implicit
conversion, closures, mixins, and pattern matching, which
simplify PIR’s design and Scala is flexible enough for us to
plug in and plug out artifacts as we need. For instance, we

create vertices (or nodes) in different stages (source, pipe,
and drain) with the help of implicit conversion. Moreover,
Scala is 100% bytecode compatible with Java code, which
allows us to easily reuse a large number of the existing
MIR Java libraries. In our experiments, we used the LIRE
image retrieval framework to extract global and local image
features, MALLET for LDA modeling, Apache Lucene 1

for indexing and query, and a Java library for CCA for
transmedia query in experiments in Section VIII-A. Below
we discuss two interesting aspects of our preliminary imple-
mentation 2.

A. Implicit conversion

To illustrate the use of implicit conversion, consider
the expression img.connect(f_cedd), where img is
a pipeline vertex that loads source images. The connect
method expects a projection stage argument while f_cedd
is just a projection function. In this case, the Scala compiler
is able to use the implicit function shown in Listing 4 to
automatically convert f_cedd to a projection stage object.

Listing 4: Implicit Conversion

1 implicit def projToProjStage[In <: IFeature,
2 Out <: IFeature]
3 (proj: GenericProj[In, Out])
4 = new ProjStage(proj)

This conversion is also applied to f_sift in
f_sift.connect(f_cluster, kModel) since the
method connect is defined in ProjStage not in
f_sift. A similar conversion function converts the ar-
gument (f_cluster, kModel) to a projection stage
object as well.

B. Internal stage object creation and access mechanism

The mechanism for PIR internal stage object creation and
access is accomplished via the visitor pattern (VanDrunen
& Palsberg, 2004). As illustrated in Figure 5, there are three
main Scala traits, SourceComponent, ProjComponent, and
TrainComponent, that all inherit the Vertex trait. (A Scala
trait is a reusable unit of code that supports inheritance
and mixin-class compositions.) Most of the stage classes,
except IndexStage and QueryStage, directly inherit from
the three main traits. Each stage class represents a stage
node in the pipeline graph. Both SourceComponent and
ProjComponent have the “connect” methods, which are the
basic building tool for the pipeline. The “connect” method
in SourceComponent creates a SourceStage node while the
“connect” method in ProjComponent connects two pipelines
together. The TrainComponent generates a model from any
machine learning tasks during the MIR execution and the
result is stored in its cache “cacheModel”. The Vertex

1http://lucene.apache.org
2https://github.com/pir-dsl/pir



Figure 5: PIR Internal Object Creation and Access Mechanism

trait provides the essential “accept” method. This method
takes a visitor as a parameter with type signature shown
in Figure 6. We defined a basic RunStrategy trait that is
itself a visitor. By extending the RunStrategy trait, we can
implement different code execution strategies. Specifically,
when the pipeline graph is executed, each stage node will
be visited and the result will be stored in its cache and
the strategy will decide how the stage node is visited. For
example, the image loading will be executed in parallel on all
the worker nodes on Amazon EC2 cluster if SparkStrategy
is used to visit the LoadStage node.

Finally, we have a JobVisitor class that inherits the Visitor
trait as well. Its purpose is to generate a pipeline graph
without even running the code. Specifically, with some
check-pointing hooks built into each stage node, we can
use JobVisitor to draw the pipeline graph through a graph
traversal. This is useful to provide PIR users the “big
picture” of a complex MIR program so that the correctness
of the program from at least the design perspective can
be verified before the expensive execution on the actual
cluster/cloud is scheduled.

C. Distributed execution

The PIR “compiler” translates the DSL program to a
pipeline graph and the PIR runtime can execute the pipeline
graph sequentially, in parallel, or on distributed platforms.
The parallel execution of PIR programs is straightforward.
We implemented a ParallelStrategy class that overrides the
visit methods for projection vertices to run projection tasks
in parallel threads.

Distributed execution, however, requires more intricate
design. Next, we explain the deployment of PIR programs on

Figure 6: PIR Stage Node Access via Visitor

Amazon EC2 (Amazon, 2013) using a MapReduce frame-
work – Spark (Zaharia et al., 2010). The system diagram of
PIR integration with Spark and Amazon EC2 is illustrated
in Figure 7.

We use Spark to provide the distributed runtime environ-
ment for its simplicity. In fact, we only need to insert a few
lines of source code to PIR runtime to interface with Spark.
Spark is a MapReduce framework with memory-based data
distribution using Resilient Distributed Datasets (RDD) that
can run 10 times faster than Hadoop (Shestakov et al., n.d.).
For our experiments, large amount of intermediate data was
kept in memory when possible to reduce I/O overhead. For
fault tolerance, Spark maintains the lineage of all actions on
the RDDs rather than the data itself. If some intermediate
data is lost or corrupted, it can be reconstructed by applying



Figure 7: PIR Cloud System Diagram

the lineage chain of actions to the raw data. Through Spark,
we can deploy PIR programs on any computing clusters but
the most interesting deployment targets are cloud computing
platforms since they provide elastic support that can fulfill
the needs of big data analytics. For experiments, we selected
Amazon EC2 as our deployment target.

D. Deployment PIR Programs on Amazon EC2

Spark provides Python scripts for deployment on Amazon
EC2 and it also bundles the tool Ganglia to monitor the
details of PIR execution, such as memory consumption on
a particular worker node. For successful deployment of
PIR programs on Amazon cloud, we need carefully tuned
environment parameters, correctly designed interfaces, and
accurately measured results.

1) Deployment of PIR programs on AWS: PIR programs
have both parallelizable and sequential components. PIR
runtime only passes the parallelizable components to the
Spark framework via the MapReduce operations while the
sequential components (e.g. KMean cluster) are executed on
the master node.

We assemble the PIR program and all related artifacts into
a single jar file with the Scala build tool sbt so that Spark
can send the code from the master node to all worker nodes
at runtime for execution. To configure the Spark context
initialization parameters, we externalized these parameters
for PIR programs to property files, which can be passed
to JVM at runtime. For properties that all nodes use, we
initially set them in the Spark configuration files on the
master node and replicated these files to all worker nodes on
the cluster. Spark splits the data into slices before they are

distributed to worker nodes, we have made the number of
slices a configurable parameter, observing that performance
improves with a higher number (e.g. 160) of slices than the
default 10. In general, the number of slices should increase
with the number of worker nodes.

Spark uses akka (a concurrency toolkit for Scala) for
concurrent execution. This requires communication between
the master and worker nodes or between the application and
worker nodes (e.g. passing results from worker nodes to
the application). We adjusted akka frame size parameter to
150 - 250 MB to properly accommodate the size of the
intermediate results. In PIR’s distributed computation, the
intermediate data are kept in memory using the Spark’s per-
sist function, which improves the performance significantly.

2) Configuration of AWS instances: Amazon divides its
cloud resources by zones and allocates available resources
dynamically. Since Spark needs to initialize the cluster
context with the master node’s host domain name or IP, it
is a good practice to associate an Elastic IP to the master
node’s dynamic domain name so that the same IP address
can be reused when the EC2 instances are restarted.

We initially performed the scalability tests by incremen-
tally adding more worker nodes to the cluster. However,
due to Amazon’s dynamic EC2 resources allocation, every
new test will likely run on different set of cluster nodes
and the performance may be significantly skewed. Thus,
we requested the maximum number of nodes that we use
(e.g. 20 nodes) and then dropped 2 nodes at a time for each
subsequent run to reduce the impact of cluster node variation
between test runs.

With dynamic EC2 allocation, it is not practical to deploy
the raw data to EC2 each time we start a new experiment.
Hence we stored all raw data on the Amazon S3 storage
service. For this purpose, we designed a simple interface
for interaction between the PIR runtime and Amazon S3
storage.

3) Job scheduling of AWS instances: We set the Spark
scheduler mode to FAIR so that available resources are
assigned to jobs in a “round robin” fashion. That is, all Spark
jobs received roughly equal share of cluster resources. We
found that the FAIR mode performs better regarding overall
performance than the default FIFO mode with which later
job has to wait until early job releases the resources.

Since some of the jobs in our experiments may take much
longer to complete than others, we increase the Spark’s max
job failure value from the default 4 to 6 to give the jobs
more chances to finish and hence avoid unnecessary job
restart. We have also applied Spark’s KryoSerializer tool
to greatly increase the speed of serialization since a lot of
feature extraction code that PIR invokes is fairly complex
and lengthy.



VIII. EXPERIMENTS

A. Shared-memory parallel execution
To evaluate the performance of PIR, we ran several

experiments using a public Wikipedia dataset (Rasiwasia et
al., 2010) consisting of 2866 Wikipedia articles (image +
text) that spread over 10 categories (Table I). This dataset
is about 1.53 GB in size and each article comes in a pair
– every image has its corresponding text annotation. This
one-to-one mapping is necessary for CCA calculation.

For evaluation of shared-memory parallel execution, we
ran tests on a single machine with Intel Core I5 CPU with
2 cores and 2 hyperthreads per core so that we expect peak
performance increase using a pool of 4 threads.

The experiments we ran are multi-modal query exper-
iments. In (Clinchant, Ah-Pine, & Csurka, 2011), MIR
tasks that involve the combination of two or more different
modality data are summarized in three categories, early, late,
and transmedia fusion. Such categorization is based mainly
on when the fusion (synergy between features from various
modalities) occurs. Early fusion represents the class of MIR
algorithms, where different features are combined before the
similarity is computed for a retrieval task while late fusion
algorithms compute the similarity per modality and apply an
aggregation function on the similarities to generate a final
similarity. Transmedia fusion algorithm, like late fusion,
obtains similarity results from different modalities / feature
type first. But it differs from late fusion in that instead of the
aggregation function, it applies a diffusion process to return
results from a modality that is different from the query’s
modality. For instance, if the supplied query is an image,
the query results may contain a list of text files that are
“similar” to the query image.

Our experiments cover two topics – early and transmedia
fusion. We skip the late fusion experiment as this is similar
to transmedia fusion from execution perspective.

1) Image query with Lucene Index: The first experiment
we performed is image query against index (see Listing 1
that is illustrated in Figure 8). In this experiment, we used

Figure 8: Image Retrieval Graph

all the 2866 images for execution. The CEDD and FTCH
features were extracted from these images. The features
were then fed into Lucene engine to generate index. Finally,
a query image was supplied to query against the index
to retrieve similar images. We showed results using the
sequential vs. parallel strategy in Table II.

image query (unit:sec)
run Sequential Parallel
1 482 304
2 476 303
3 478 303
4 475 299
5 479 305

transmedia (unit:sec)
run Sequential Parallel
1 240 186
2 232 186
3 233 178
4 233 182
5 234 172

Table II: Runtime of image query and transmedia query

2) Transmedia query with CCA model: In this exper-
iment, we performed a transmedia query multimedia in-
formation retrieval task (see Listing 2 that is illustrated
in Figure 9). We used 1433 (half of the entire dataset)

Figure 9: Transmedia Query Graph

image and text files respectively from all the 10 categories.
SIFT features were extracted from the image files. Then
a clustering step was applied to all the SIFT features to
obtain histogram features (or bag of visual words in some
literature). The LDA process was applied to the text files
to obtain a LDA model. This model was then applied to
all the text files to obtain a probability distribution across
the 10 categories for each image. Both the histogram and
distribution data from image and text were used for the
CCA computation and ended up in a CCA model. Finally,
a query image against the CCA model will result in a
list of similar text files (with descending similarity scores)
while a query text against the same CCA model will result
in a list of similar image files. This is also why this is
called transmedia query in the literature. The results are
summarized in Table II.

The results show that our parallel strategy outperforms the
sequential counterpart consistently across multiple execu-
tions. Note for both of the experiments we only parallelized
portion of the pipeline when we applied the parallel strategy.
Namely, only source loaders (Image and Text), the projectors
(CEDD, FTCH, SIFT and LDA) were parallelized. The train-
ing and indexing processes were still sequentially executed.
We should see further performance gain if we apply parallel
algorithms for training and indexing.

B. Distributed execution

We evaluated the performance of PIR on Amazon EC2
with the same programs that were used in Section VIII-A.



Category Art Biology Geography History Literature Media Music Royalty Sport Warfare
Count 172 360 340 333 267 236 237 185 285 451

Table I: The Wikipedia article (Image + Text) data category with counts
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Figure 10: Scalability of image and transmedia query

Figure 10 shows the speed-up factors of runtime with 4-
20 nodes over the runtime with 2 nodes. The results indicate
good runtime scalability of the PIR programs running on the
Amazon EC2 clusters. The total runtime decreased as the
number of worker nodes increases though the performance
gain is not linear. The non-linear speedup is also due to that
we only parallelized portion of the PIR programs. That is,
file loading (Image and Text) and feature extraction (SIFT
and LDA topic distribution) are run in parallel while training
(e.g. K-Means) and indexing are still sequentially. We expect
to see better performance if we adopt parallel algorithms for
machine learning and apply distributed indexing.

C. Filtering and Sorting

The last set of experiments used a larger data set and
examined the performance of filtering and sorting in PIR
programs. We deployed the program shown in Listing 3 on
Amazon EC2 cloud. The experiments were performed using
the ImageCLEF dataset IAPR TC-12 (Escalante et al., 2010)
that contains 20,000 images from 40 categories. This dataset
was uploaded to Amazon S3 storage bucket so that all the
Amazon cluster worker nodes can access them. The pipeline
process of the PIR program is illustrated in Figure 11. The
pipeline uses filters to select images of the highest similarity
scores in terms of the feature distance to the query image.
The first filter returns 2000 images, the second filter returns
500 images, and the last filter returns 100 images. Note that
the execution of a filter needs to complete to calculate the
input to the next filter, which has some negative effect on
the performance scaling. The runtime performance is shown

Figure 11: Series feature aggregation query graph

in Figure 12, which also demonstrates good scalability.
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Figure 12: Runtime of series feature aggregation (SFA)

IX. RELATED WORK

The benefits of DSL are summarized in (Spinellis, 2001),
which also described some common DSL design patterns.
A DSL is a special purpose language and thus needs to
be designed for the relevant domain(s). Special domain



knowledge and characteristics must be reflected in the DSL
and in turn special operations can be adopted. PIR can
be associated with several patterns mentioned in (Spinellis,
2001). Since PIR is embedded in the host language Scala,
it falls under the “piggyback” pattern and naturally inherits
all the merits from Scala “for free”.

Below we discuss two types of related works. The first
type includes DSLs that provide performance improvement
by delaying the actual computation until a later stage
where performance optimization can be applied. The second
type includes DSLs designed to provide performance gain
through domain-specific constructs for data parallel execu-
tion.

A. Staging-based DSL

OptiML (Sujeeth et al., 2011) is designed to provide a
parallel DSL for the machine learning (ML) community to
bridge the gap between ML algorithms and heterogeneous
hardware. Built on top of Delite (Brown et al., 2011),
OptiML performs static domain-specific optimization based
on the ML algorithm features such as iterativeness and prob-
abilistic reasoning. OptiML restricts allowed data type as
one of the three basic types: Vector, Matrix, and Graph. Such
restriction provides the compiler more opportunities of better
code optimization. As a DSL embedded in Scala, OptiML
uses a metaprogramming technique Lightweight Modular
Staging to build the so-called Intermediate Representation
(IR) (Rompf & Odersky, 2010) nodes. Each node contains
the operation (how the data will be processed) and its de-
pendencies (the data and control). Statements are translated
to a nodes and optimization can be performed on these
nodes. The “staged” IR node is similar to the vertices of
our pipeline graph. However, PIR is different from OptiML
in several different ways. First, PIR works for MIR domain
while OptiML considers ML domain. Specifically, instead of
looking for deep optimization of vector/matrix computation
that ML algorithms often desire, PIR tries to help the user
concentrate on building the main pipeline structure of the
whole algorithm, which forms the backbone of most of the
MIR tasks. Second, even though PIR is also built on top
of Scala, it does not require the user to use any advanced
Scala features but just connecting different types of nodes to
form the pipeline. In other words, PIR users need to know
very few Scala constructs. However, OptiML requires some
knowledge of Scala to be able to use it effectively.

Diderot (Chiw, Kindlmann, Reppy, Samuels, & Seltzer,
2012) DSL is deigned for image analysis and visualization
domain and supports a high-level model of computation
that is based on continuous tensor fields. Tensor is a data
structure representing the values stored in images and pro-
duced by operations on images. Tensors are designed to link
the image data in the continuous and discrete space. As
described in (Chiw et al., 2012), “0-order tensors, or scalars,
capture real-valued samples from scans typically shown in

gray-scale (e.g., CT). 1-order tensors, or vectors, describe
directional quantities such as velocity and spatial derivatives
of scalar fields. 2-order tensors, represented as matrices,
describe linear transforms on vectors, first derivatives of
vector fields, and second derivatives of scalar fields.” A set
of tensor operators (e.g. differentiation and convolution) are
defined and special language structures, global definition
(input), strand definition (computation core of the algo-
rithm), and initialization (initial set of strands), are used to
handle image analysis and visualization problems in a DSL
manner. Diderot abstracted out the mathematical details from
image processing domain and make that optimizable and
parallelizable. In comparison, PIR emphasizes on capturing
the control flow (the pipeline) in a typical multimedia
information retrieval task. Thus, it is easier to locate the
critical path to locate better parallelization and optimization
scheme with PIR program than with Diderot.

(Christiansen, Theil Have, Torp Lassen, & Petit, 2013)
presents a logic-based scripting pipeline language, BAN-
pipe, to model compositions of time consuming analysis.
BANpipe creates a pipeline to represent the relayed pro-
cessing of computation in the biological sequence analysis
domain. Sequence analysis often requires processing large
files (input, output, and intermediate data) and these files
are likely to be processed by a set of different programs.
Specifically, the output of one program is the input of the
next program. This naturally fits the “pipeline” paradigm.
While BANpipe shares the pipeline concept with PIR, PIR
is different from BANpipe in various ways. First, BANpipe
works with Prolog for the biological sequence processing
while PIR works with Scala in the multimedia information
retrieval domain. Second, BANpipe implementation applies
a list of chaining processors on files and thus essentially
works like a piped batch-job processor. In comparison, PIR
implementation follows two steps, translating code into a
pipeline graph and implements the graph with different
strategies. With such high level pipeline graph abstraction,
different optimization, scheduling, and analyzing can be
performed on the graph level independent of the detailed
operations and/or computation within each node. In addition,
PIR provides a much clearer data and control flow and
thus is very domain user friendly (allow them quickly
modifying program without worrying about the underneath
implementation).

B. Data-parallel DSL

FlumeJava (Chambers et al., 2010) provides a Java library
to support data-parallel pipelines. It defers evaluations of
operations and constructs an execution plan dataflow graph.
This dataflow graph serves similar purposes (e.g. optimiza-
tion) as the PIR pipeline graph. However, PIR pipeline
graph focuses on different MIR tasks while FlumeJava is
for general computation.

DryadLINQ (Yu et al., 2008) translates .NET applications



into a distributed execution plan, which contains DryadLINQ
subexpressions. Each subexpression is executed in a separate
Dryad vertex. A job manager creates a job graph using the
execution plan and spawns vertices as resources become
available on the cluster. Each vertex executes its program
and writes data to the output table. This design gives
the users choices to continue writing traditional high-level
imperative program. However, such strength comes with a
cost. The underlying distributed environment is supported by
a compiler and code generator, which increases the overall
execution time.

There are several other popular DSL languages such as
Google’s Sawzall (Pike, Dorward, Griesemer, & Quinlan,
2005), Yahoo’s Pig (Olston, Reed, Srivastava, Kumar, &
Tomkins, 2008), and Facebook’s Hive (Thusoo et al., 2009))
that allow the developers to write declarative programs
on top of distributed computation platforms. For example,
Sawzall, Pig, and Hive code are all compiled to general
MapReduce applications. Compared to these DSLs, PIR has
a very small footprint as an embedded DSL. PIR’s “compile”
process is just part of the runtime execution. Also, PIR can
be easily integrated with different computing environments
by switching to different execution strategies. For example,
the Spark integration code has less than 100 lines of code
in total. As a MIR DSL, we have specialized constructs that
serve MIR tasks well and can be optimized incrementally in
future versions.

X. CONCLUSION

In this paper, we presented a domain specific language
PIR for implementing MIR applications. PIR provides a
high level structure for constructing MIR workflow and
hides the details of resource management, optimization,
and parallelization. Programs written in PIR are easy to
read and reusable. It is also extensible since the DSL is
based on a Java compatible host language Scala that allows
us to incorporate algorithms implemented in Java-based
MIR libraries. As future work, we plan to investigate the
applicability of our DSL to wider range of MIR applications.
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