
Effective API Navigation and Reuse

Awny Alnusair, Tian Zhao
Department of Computer Science

University of Wisconsin-Milwaukee, USA
{alnusair, tzhao}@uwm.edu

Eric Bodden
Department of Computer Science

Technische Universität Darmstadt, Germany
bodden@acm.org

Abstract

Programmers can frequently benefit from reusing exist-
ing program code. However, most reuse libraries come
with few source code examples that demonstrate how the li-
brary at hand should be used. We have developed a source-
code recommendation approach for constructing and de-
livering relevant code snippets that programmers can use
to complete a certain programming task. Our approach is
semantic-based, relying on an explicit ontological represen-
tation of source code. We argue that such representation
opens new doors for an improved recommendation mecha-
nism that ensures relevancy and accuracy. Many existing
recommendation systems require an existing repository of
relevant code samples. However, for many libraries, such a
repository does not exist. In our approach, we instead uti-
lize points-to analysis to infer precise type information of
library components. We have backed our approach with a
tool that has been tested on multiple software frameworks.
The obtained results are promising and demonstrate the ef-
fectiveness of our approach.

1. Introduction

Code reuse has many benefits when developing, enhanc-
ing, and evolving large-scale software systems. Program-
mers can reuse code in many ways. One common way is
to access libraries of reusable components, or to plug into
application frameworks. Unfortunately, many libraries and
frameworks are not intuitive to use. While some excep-
tional pieces of software may be documented well, it is of-
ten the case that libraries and frameworks lack informative
API documentation, and lack sufficient and effective source
code examples that would explain a particular library fea-
ture. When such an example does exist, it can be very
helpful: programmers can often simply copy the example
into the current project and then adapt it to the new con-
text, thus enabling a particular API programming task to be
completed rather quickly.

In this paper, we present an approach for automatic
source-code recommendation. Our approach is based on
the idea that many programming tasks require program-
mers to compose a chain of method calls that convert a
given source object of some particular type to a target ob-
ject of some other type. Thus, the programmer needs to an-
swer object-instantiation queries of the form (Source object
⇒Destination object). In the special case where the Source
object is not specified, the object instantiation-problem is
reduced to either a simple constructor invocation or a static
method invocation. For illustration, consider a program-
mer trying to reuse Jena1, an open-source Java applica-
tion framework for building Semantic Web applications. At
some point, the programmer wishes to obtain an Ontology
Class view of a Resource (e.g., ontological property) identi-
fied by a given URI. This view can be used, for example, to
determine if an Ontology Class with the same URI exists in
the Ontology Model. A programming task of this kind can
be seen as an object-instantiation task of the form (Property
⇒OntClass). The following code snippet shows a sample
solution for this query:

Property pr = ;
Model model = pr.getModel();
OntModel ontModel = (OntModel) model;
OntClass ontClass =

ontModel.getOntClass(pr.getURI());

In an ideal world, even for a programmer who is new
to Jena, accomplishing this conceptually simple task should
not be time consuming. In practice however, identifying
the proper sequence of method calls, as well as the required
type cast within this chain, require the programmer to have
a substantial knowledge of the framework’s structure. Even
worse, some complex call sequences require getting a han-
dle of an object by invoking a static method from yet a to-
tally different class (cf. snippet in Section 3.1). Further-
more, many application frameworks do not provide type-
specific methods that may free the developer from using

1http://jena.sourceforge.net/

http://jena.sourceforge.net/

downward type casts. This complicates the process of com-
posing code snippets, as casts must be inserted to make the
snippets compile. Our proposal to automatic code recom-
mendation tackles these issues effectively by providing an
ontology-based representation of source code structures that
captures type information about possible concrete types.

An ontology is an explicit specification of a conceptu-
alization [4]. That is, an ontology provides means to for-
mally and explicitly describe concepts, objects, properties
and other entities in a domain of discourse, and to describe
the relationships that hold among these concepts. We thus
use ontology formalisms to represent software assets by
building a knowledge base that is automatically populated
with instances representing source code artifacts. Our ap-
proach uses this knowledge base to effectively identify and
retrieve relevant code snippets.

Besides addressing knowledge representation issues, our
approach improves on the existing state-of-the-art in the fol-
lowing ways:

� Unlike other recommendation approaches, our ap-
proach neither requires a repository of sample code
to mine for snippets, nor do we require our tool to be
backed by a source-code search engine to obtain these
samples. These requirements have been identified as
one of the major limitations of current recommenda-
tion systems [10]. Instead, we solely rely on analyzing
the framework’s or library’s API.

� Since the structure of an API usually contains too little
information to obtain useful code snippets that require
special features (e.g. determining the legality of a type
cast), we use interprocedural points-to analysis to en-
rich our knowledge base with information about the
possible runtime behavior of the API.

� We provide a context-sensitive approach that analyzes
the user’s code when constructing, ranking, and de-
livering potential code-snippet candidates. For in-
stance, the sample solution discussed above may not
be the best candidate if there was an object of type
OntModel already visible in the current context.

� Similar to other approaches, we traverse a graph repre-
sentation of source code to find a path from the source
to the destination object. However, since our graph is
based on an ontology model, it is enriched with addi-
tional data that guides the search and helps us obtain
more precise results.

2 Related work

Researchers have proposed many code-mining tech-
niques, all of which tackle the recommendation problem

from different perspectives. Data Mining-based techniques
try to reveal usage patterns of program components from a
corpus of existing code examples. This is usually accom-
plished by extracting association rules which incorporate
taxonomies of inheritance relationships [8], or by applying
frequent-sequence mining and clustering techniques [16]
to extract API methods that are frequently invoked in se-
quence. Such data mining techniques often suffer from scal-
ability and rule-complexity issues. Traditional information-
retrieval techniques, on the other hand, circumvent some of
these complexity issues. They allow users to formulate key-
word queries to retrieve source code samples ranked based
on the match between the query and the obtained name-
based indices [11] or latent semantic-based indices [9]. Due
to the nature of the schemes and the keyword-based search
employed, traditional keyword-based recommendation sys-
tems are usually very imprecise.

Some other approaches do in fact recommend personal-
ized code snippets when queried. These approaches base
their recommendation on analyzing a large corpus of sam-
ple client code collected using Google Code Search (GCS)
(PARSEWeb [13]), or by searching in a pre-populated lo-
cal repository (Strathcona [5], Prospector [7], and XSnip-
pet [12]). Strathcona for example, is a recommendation tool
that uses heuristics to match the structure of the code under
development (structural context) to the structure of the code
in a source code repository. PARSEWeb, Prospector, and
XSnippet, on the other hand, are more focused on answer-
ing specific object instantiation queries.

Although these approaches take important steps in the
right direction, we believe that there are fundamental is-
sues related to the mechanisms used for data gathering,
data processing, and most importantly, data representation.
Firstly, with the exception of Prospector, all approaches
that we mentioned rely on a hard-to-find repository pop-
ulated with client code that expresses good usages of the
framework. Prospector on the other hand, does analyze
API signatures for the most part, but still relies on a repos-
itory to handle special features such as downcasts. For
tools that collect code samples from the web, these samples
are usually incomplete fragments that cannot be analyzed
precisely. Secondly, traditional knowledge-representation
mechanisms and hard-coded heuristics affect the quality
of the retrieved results and in most cases are highly un-
optimized. None of the approaches discussed thus far uses a
formal and explicit representation of either the user context
or the source-code structure. Whether the representation
mechanism used is a relational database (Strathcona) or tra-
ditional graph-based representation (PARSEWeb, XSnippet
and Prospector), we hypothesize that encoding the repre-
sentation using ontology formalisms greatly improves the
search and retrieval of relevant code snippets. Ontologies
can naturally combine knowledge from multiple sources

2

(contexts) and then allow for computing entailments from
this combined knowledge.

To explore this hypothesis, we use a purely semantic-
based approach to source-code recommendation. This ap-
proach uses ontologies to represent the complex depen-
dencies of code elements and allows for modeling a large
class of inter-relationships and dependencies between vari-
ous program elements.

3 Ontology representation of source code

An ontology is an explicit data model for a particular
domain. It consists of machine-interpretable definitions of
classes that formally describe domain-specific concepts, re-
lationships between classes, structural properties of classes,
and constraints, expressed as axioms. Due to their solid
formal and reasoning foundation, ontologies have been suc-
cessfully used by various research body to improve software
engineering processes [15].

To explicitly represent the conceptual source-code
knowledge of the user context as well as software libraries
used in the user’s project, we have created a Source-Code-
Representation Ontology (referred to afterwards as SCRO).
SCRO provides a base model for understanding the rela-
tionships and dependencies among source-code artifacts. It
captures major concepts and features of object-oriented pro-
grams, including encapsulation, class and interface inheri-
tance, method overloading, method overriding, and method
signature information. SCRO’s knowledge is represented
using OWL-DL2 ontology language. OWL is a web-based
language used for capturing relationship semantics among
domain concepts, OWL-DL is a subset of OWL based on
Description Logic and has desirable computational proper-
ties for reasoning systems. OWL-DLs reasoning support al-
lows for inferring additional knowledge and computing the
classification hierarchy (subsumption reasoning).

SCRO defines various OWL classes and subclasses.
These classes map directly to source-code elements and col-
lectively represent the most important concepts found in
object-oriented programs. Furthermore, we define various
object properties, sub-properties, and ontological axioms
within SCRO to represent the various relationships among
ontological concepts. SCRO is precise, well documented,
and designed with ontology reuse in mind. The availability
of SCRO online [1], allows researchers to reuse or extend its
representational components to support any semantic-based
application that requires source code knowledge.

After having created the ontology structure, one next
needs to populate the knowledge base with ontological in-
stances (OWL individuals) that represent various concepts
in the ontology. In the context of source-code recommenda-
tion, we need to populate SCRO with instances from various

2http://www.w3.org/TR/owl-guide/

sources. Remember that we are interested in tracing method
call sequences to produce a code snippet for a particular ob-
ject instantiation task. As the main source of information
for tracing such sequences, we consider the framework(s)
currently being reused. Furthermore, to rank the retrieved
snippets, we also take into account the user context depicted
by the current project under development.

To that end, we have built a knowledge generator for
Java. The generated semantic instances are serialized us-
ing the RDF3 language. RDF is suitable for describ-
ing resources and provides a data model for representing
machine-processable semantics of data. For each library or
framework parsed, our knowledge generator builds an RDF
ontology that conforms to SCROs descriptions of source
code. This way, we provide a clean separation of the explicit
OWL vocabulary with its associated schema definitions rep-
resented in SCRO from the metadata encoded in RDF. Fur-
thermore, our knowledge generator is fully automatic and
efficient, it took only 4.5 seconds to parse, process, and gen-
erate a knowledge base for the entire Jena framework. For
an extended description of SCRO, the process of knowledge
population, and samples of our knowledge extractor sub-
system, we refer the reader to our ontologies website [1].

3.1 Recommendation scenario

Consider a second example of a developer trying to reuse
the Jena framework. The developer wishes to program-
matically construct a fragment of a RDF model based on
a template in a given query. She would start with a Query
object obtained from a String representation of the query
and wishes to end up with a Model object representing the
newly constructed RDF model. For a developer who is un-
familiar with this API, accomplishing this task may not be
easy, in part because there are some intermediate steps and
various static method invocations for instantiating the de-
sired Model object; these steps are outlined in the follow-
ing code snippet:

Query query =
QueryFactory.create(queryString);

QueryExecution qe =
QueryExecutionFactory.create(query);

Model m = qe.executeConstruct();

Approaches based on heuristic-based queries [5], first
use a set of hard-coded heuristics to extract the structural
description of the code being developed. These approaches
then match this description against the structural descrip-
tions found in a repository populated with sample client
code. The result returned to the user is a set of methods re-
trieved from the repository after applying all the heuristics.

3http://www.w3.org/TR/rdf-primer

3

http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/rdf-primer

Ideally, the method embodies the code snippet shown above
is included in this set. Notably, these kind of queries can
be easily answered using our proposed approach: SCRO
currently captures all structural descriptions of source code,
ontologies can be populated through parsing, and heuristics
can be applied to the generated knowledge using semantic
rules. Ontologies, in this case, provide expandable solutions
for extracting new knowledge when it becomes available, as
well as flexible means for encoding heuristics and ranking
the results.

However, we instead answer an object-instantiation
query by constructing a code snippet. This snippet then
shows how to get a handle to the Model object in the code
snippet above. In our approach, we rely on an RDF-graph
representation of the application framework being reused.
RDF is a flexible and extendable data-representation and
graph-based modeling language. Unlike traditional graph-
representation mechanisms, RDF graphs provide a pre-
cise description of resources and are capable of encod-
ing metadata in its nodes (represented by OWL classes)
and edges (represented by OWL object properties). Thus,
RDF graphs provide flexible means for semantic reason-
ing and deductive querying. Figure 1 shows a partial
RDF-graph representation of the code snippet we discussed
above. As described in Section 3, we can obtain this
representation by parsing the Jena application framework.
Nodes in the graph show instances of OWL classes that
are specified in the knowledge base, edges, however, are
SCROs object properties. For example, hasOutputType
is a functional property that represents the method’s re-
turn type. hasInputType represents the type of a
method’s formal parameter, the inverse of this property is
isInputTypeOf. Inverse properties are included so we
can traverse the RDF graph in both directions.

Given this directed RDF graph representation, we con-
struct a code snippet through a guided brute-force graph-
traversal search starting at the node that represents the
source type (Query), enumerating all possible path can-
didates to the given destination type (Model). However,
the cost of traversing and querying a large RDF model is
susceptible to increase as the number of OWL individuals
in the knowledge base increases. Combined with inference
provided by the reasoner, this can be an expensive combi-
nation. To avoid reasoning overhead, we use the reasoner
to obtain the inference closure of the original model. We
then save the result which includes the computed entail-
ments into a plain ontology model, with no inference en-
gine attached to it. Therefore, the new model will be used
for further processing. This way, we maintained the bene-
fits of inference but avoided the added costs implied by us-
ing the reasoner. Furthermore, since we are only interested
in object-instantiation queries of the form (Source object
⇒Destination object), not every path in the graph is of in-

Figure 1. Answering: Query⇒Model

terest to us. Therefore, we further restrict the obtained plain
model to only those RDF nodes and edges that can ever be
used in a path that represents a code snippet from the source
object to the corresponding destination object. The obtained
model will be used as the basis for graph traversal, query-
ing, and hence snippet construction. We call this model the
Snippet Model.

4 Handling Downcasts

The scenario discussed in Section 3.1 only shows fea-
tures that one can obtain from parsing a given framework’s
API signatures. In particular, some complex application
frameworks do not usually provide type-specific methods
that may free the developer from using narrowing refer-
ence conversions (downcasts) to complete a particular pro-
gramming task. At its current state, the Snippet Model
and its associated RDF graph has no support for such fea-
tures. We thus introduce the hasActualOutputType
OWL property from SCRO. This property represents the
actual runtime type of a given method. Therefore,
we enrich the RDF graph with an edge labeled with
hasActualOutputType that leaves a given method and
enters every possible runtime type of this method. When
we construct a code snippet, hasActualOutputType
is treated as an expression casting the result of the method
down to its actual return type.

In order to obtain the precise return type of API meth-
ods we rely on inter-procedural points-to and call graph
analysis. Points-to analysis [3] is a static program analysis
technique that analyzes a sample program in order to obtain

4

precise reference and call-target information. Among other
usage areas, points-to analysis techniques have been used
in solving complex software engineering problems. The
essence of using these techniques in our approach is to an-
alyze each API method in order to obtain a points-to set of
possible runtime return types of the target method. Once ob-
tained, this information is used to enrich the snippet model
with paths, along the hasActualOutputType property,
between a given method and its actual runtime type. This
information will be used to determine the legality of a type
cast when search is performed at a later stage. In order to
perform this pre-processing step, we use the Soot frame-
work [14], a popular program analysis and optimization
framework for Java programs. Soot is capable of perform-
ing inter-procedural data-flow analysis on a whole-program
points-to graph mode. However, this precise analysis re-
quires creating program entry points. Although we are cur-
rently working on methods that make points-to analysis vi-
able on programs that have no distinguished entry point, this
is still ongoing work. Therefore, we currently write appro-
priate entry points manually, by providing a main class with
a main method that exercises the API in question.

Suggesting a code snippet that contains a downcast is
not the norm. In fact, the need to use a downcast reveals
the hidden complexity of the underlying framework. Con-
sider a programmer coding for the Eclipse API who wishes
to obtain a handle of JavaInspectExpression rep-
resenting the currently selected expression in the debugger
represented by an object of type IDebugView. The sam-
ple code below details a sample solution:

IDebugView debugger = ...
Viewer viewer = debugger.getViewer();
IStructuredSelection sel =

(IStructuredSelection)
viewer.getSelection();

JavaInspectExpression expr =
(JavaInspectExpression)

sel.getFirstElement();

This example is in fact taken from the Prospector tool as
a motivational example for using a corpus of client code to
synthesize code snippets with downcasts. In such rare sit-
uations where the RDF graph will not find a solution path,
we rely again on points-to-analysis to construct such snip-
pet. Figure 2(a) shows part of the RDF graph where the
dead end is reached. ISelection has in fact a single
method of no relevance, isEmpty()4 and there is no way
for the traversal algorithm to proceed further. We thus in-
fer the runtime return type of method getSelection()
by using flow-insensitive points-to analysis on the partially

4Methods that return a value of primitive type are excluded from the
snippet graph

Figure 2. IDebugView⇒JavaInspectExpression

constructed snippet. Upon completion, this analysis con-
cludes that IStructuredSelection is the actual re-
turn type of getSelection() at that particular call site
(dashed lines represent hasActualOutputType). The
same process is repeated for getFirstElement() as
shown in Fig. 2(b). We thus avoided using a static corpus of
client code that may in fact have no sample for answering
this query.

5 Snippet ranking and selection

Since every obtained code snippet represent a path in the
graph, it is notable that answering a given query may re-
sult in a large number of paths, each of which is a solution
candidate. However, not all solutions of the same degree of
relevancy to the user. It is also notable that no recommen-
dation mechanism can rely on the type system to identify
best candidate solutions, therefore, heuristics can be used to
rank the results based on relevancy to the task at hand. In
our approach, we use the path size heuristic as well as user
context heuristics.

Shortest-Path-First (SPF) is simple yet proven effective
heuristic. It assigns top rank to the shortest path in the
graph. This heuristic is a variation of the code length heuris-
tic proposed by Prospector[7] and used by others. However,
in our case, a path size represents the number of RDF state-
ments that are necessary to compose the snippet. Simply, a
RDF statement is an assertion that a relation holds between
two resources. For instance, the statement (executeCon-
struct() hasOutputType Model) asserts that the relation ha-

5

sOutputType holds between executeConstruct() and Model.
Therefore, the size of the path in Fig. 1 is five.

While SPF clusters and ranks paths based on their size,
context-based heuristic assigns higher ranks to paths that
better fit within the current user context. We thus analyze
the code that is currently being developed by the user, then
we create a context profile that include all visible types that
are either declared by the user or inherited in the user’s con-
text. We further analyze each retrieved path in terms of the
new types that this path will introduce into the current con-
text. For example, a particular method invocation may have
an argument that requires instantiating and thus introducing
a new type into the current context. Naturally, code snippets
that introduce more types should be assigned a lower rank
value. However, if a newly introduced type is found in the
context profile, it will not count against the enclosing path.
This is entirely based on a simple scoring procedure that ac-
counts for the number of newly introduced types and their
visibility in the context profile. These heuristics are simple,
easy to implement, and helped improve our results.

6 Implementation and evaluation

In order to investigate and evaluate the value of ontolo-
gies and points-to analysis in source code recommendation,
we have implemented RECOS, a prototype object instan-
tiation and recommendation system. RECOS is currently
combined with a tool we have developed for detecting de-
sign pattern instances in object-oriented frameworks [2].
This combination is meant to promote multiple levels of
software understanding and knowledge reuse. It is evident,
based on empirical studies [6], that code examples are un-
doubtedly necessary for understanding framework usage,
however, examples alone may not be enough to achieve
higher potential of systematic software reuse. To be truly
effective, developers need to learn the design knowledge
implemented in these reusable frameworks. Our current im-
plementation provides both advantages in one tool.

In order to use RECOS, one needs to provide the loca-
tion of the framework’s binaries. The knowledge extractor
subsystem automatically parses the jar files and generates
a RDF ontology representing the structural description of
the framework’s API. This ontology is classified by the rea-
soner to generate semantic entailments and ensure proper
conformance to SCRO’s vocabulary and constraints. Once
classified, the system automatically generates the snippet
model that is subsequently enriched with ontological in-
stances obtained via points-to analysis as described in Sec-
tions 3.1 and 4, respectively. The final ontology serves as
the basis for answering object instantiation queries for that
particular framework. In fact, this snippet ontology need
not be changed until a new framework release is available.
The recommender subsystem accepts a user query (using a

very simple input form for entering the source and desti-
nation objects), performs graph traversal, selects and ranks
appropriate paths, and generates a custom code snippet for
each path. This subsystem is independent from the knowl-
edge generator subsystem. A user need only to configure
it with the location of the snippet ontology, the directory
of the code currently being edited, and the number of code
snippets returned when a query is executed (default is 15).

In order to assess the benefits acquired by our approach,
we conducted multiple experiments and case studies. The
fundamental guiding hypotheses we test in these experi-
ments are:

H 1 Ontology-based representation of source code knowl-
edge improves search precision, and provides better recom-
mendation of code snippets.

H 2 Interprocedural points-to analysis techniques relieve a
recommendation system from relying on a repository popu-
lated with sample client code.

H 3 Contextual information provides better ranking and fil-
tering of recommended items.

6.1 Case study: framework usage

This experiment is designed to evaluate RECOS accu-
racy for answering object instantiation specific tasks when
reusing an application framework. Jena has been selected
for testing RECOS since it has an informative mailing list
and forum for Jena developers5. This allows us to col-
lect actual coding problems posted by developers and an-
swered by the Jena support team. Furthermore, our famil-
iarity with Jena allows us to inform the study with other
coding tasks that are designed to test different aspects of
our approach. Therefore, we have selected thirteen tasks
that vary in their complexity, ranging from a simple con-
structor or static method call to a complex sequence of ex-
pressions. Table 1 shows statistics about these tasks after
being expressed as object instantiation queries.

For each task, an environment has been setup such that
the desired code snippet is left incomplete. We then in-
structed RECOS to fill in the missing code. We remind
the reader that a desired solution to a given query may not
be completely ready for immediate insertion in user code.
In some cases, the user still need to issue another query
to instantiate one or more objects introduced by the solu-
tion (e.g., an argument in a method call or an intermedi-
ate object within the sequence). Although not complete,
such solution is still desired as long as it contains a valid se-
quence that would ultimately complete the task in the given
context. Consider task T3 for example, the retrieved code
snippet requires an object of type OntModel to be present

5http://tech.groups.yahoo.com/group/jena-dev/

6

http://tech.groups.yahoo.com/group/jena-dev/

Table 1. RECOS framework usage results
Task Source Destination Context Rk1.

T1 Statement RDFDataType - 1
T2 RDFList IntersectionClass - 1
T3 Resource ComplementClass - 3
T4 Null OntModel String 1
T5 StmtIterator RDFNode Property 2
T6 Prologue Query - 1
T7 Property Selector RDFNode 1
T8 ResultBinding RDFNode - 1
T9 Statement RDFList Property, OntClass 2

T10 IDBConnection ModelRDB - 1
T11 String Individual OntModel, String 0
T12 Query Model String, OntModel 3
T13 Resource OntModel Model 3

1 Rk: Rank of desired solution if found, 0 otherwise.

for the code to compile. RECOS generates an intermediate
variable that suggests a need to instantiate this object if not
already instantiated. Typically, these objects can be instan-
tiated with a query specifying only the destination object
as seen in task T4. RECOS accepts queries of the form
Null ⇒Destination, this is useful for creating objects us-
ing a simple constructor or static method call, or when the
source object is completely unknown. Usually, generalized
queries of this form produce many hits. In fact, since we
only rely on API signatures, the number of hits is, in many
cases, large. However, we believe that the precise ontology-
based representation of API code combined with heuristics
produces a good rank of the desired result. This shows a
clear support for hypotheses H1 and H2. Hypothesis H2
is also supported in part by tasks T8-T10. In task T8 for
example, an intermediate method that returns an object of
type Object needed to be converted to RDFNode. Points-
to analysis inferred that this cast is possible, thus, avoided
long and undesired paths.

In some case, it was extremely difficult to infer the user’s
intent. Consider task T11 for example, RECOS returns
many hits that do not complete the task in question. This
task in fact shed a light on one of the difficulties faced
by recommendation systems in general. Dealing with the
highly polymorphic String objects affects precision and re-
quires more sophisticated approaches to be handled prop-
erly. In this example, it was not clear to RECOS whether
the user wants to get an individual represented by a String
URI from an ontology model or in fact she wants to cre-
ate an individual representation from an ontology class.
On the other hand, API methods that are heavily over-
loaded have their own affects on ranking results. In task
T12, RECOS ranked the desired solution third and gener-
ates many hits. This snippet as described in Section 3.1
requires invoking a heavily overloaded method that creates

a QueryExecution to execute over the ontology model.
However, in this case, context heuristics filtered out plenty
of paths that would otherwise get a higher rank. Hypoth-
esis H3 was also supported by T13. RECOS, in this case,
filtered out many paths that would have introduced a new
object (e.g., OntModelSpec) to the user context. With
the exception of the XSnippet tool, we do not expect other
tools to perform well when context is necessary. However,
XSnippet is tied to querying specific frameworks and the
context used depends on the structure of the examples found
in the repository of sample code. This indicates that XSnip-
pet has to traverse the graph representation of the repository
every time the user issues a query.

6.2 Comparison with other approaches

It is not trivial to compare code search tools due to
the obvious lack of standard benchmarks and tool avail-
ability issues6. We thus extend a case study proposed
by Thummalapenta and Xie [13] and used to evaluate
PARSEWeb against Prospector and Strathcona search tools.
This case study is based on the Logic example project of
the Eclipse Graphical Editing Framework(GEF)7. The au-
thors proposed ten programming tasks, shown in Table 2,
expressed as object instantiation queries. We parsed the
needed jar files, generated the GEF Snippet Model, and in-
structed RECOS to find solutions for each task.

Table 2. GEF Logic tasks & results
Task Source Destination Rank

T1 IPageSite IActionBars 1
T2 ActionRegistry IAction 1
T3 ActionRegistry ContextMenuProvider 1
T4 IPageSite ISelectionProvider 1
T5 IPageSite IToolBarManager 1
T6 String ImageDescriptor 1
T7 Composite Control 10
T8 Composite Canvas 7
T9 GraphicalViewerThumbnail Scrollable 0

T10 GraphicalViewer IFiugure 0

As observed in Table 2, RECOS found solutions for
all tasks except T9 and T10. T9 was in fact unfeasible
since we could not verify the existence of the Source ob-
ject in the library. T10 was not answered by any of the
tools. In fact, PARSEWeb was unable to find a solution
for T3, Prospector and Strathcona could not answer T6-
T8. Consider T8 for example, the shortest solution would
be to invoke an existing Canvas constructor that accepts

6Closely related tools, XSnippet and Prospector are currently unavail-
able. PARSEWeb is not currently communicating with Google Code
Search(GCS) since GCS has changed its interface

7http://www.eclipse.org/gef/

7

http://www.eclipse.org/gef/

Composite in its parameter list. However, a desired so-
lution based on the user’s context is, in fact, to instantiate
PageBook, a sub-type of Composite, and pass that ob-
ject to the constructor. Without our context heuristics, RE-
COS would have ranked this answer further down in the list.
PARSEWeb ranked this higher since it utilizes the usage fre-
quency heuristic. Prospector, on the other hand, could not
answer the query or perhaps the answer did not show up in
the list8 because its ranking mechanism is based mostly on
the length heuristic.

These results show a clear support for our three hy-
potheses. However, PARSEWeb outperforms RECOS and
Prospector9 in the number of retrieved results. This is ex-
pected due to our reliance on API structures, but the ef-
fect of the final results was greatly reduced due to the na-
ture of the semantic representation and organization of API
knowledge. Furthermore, PARSEWeb ranked some of the
desired solutions higher. PARSEWeb performs sequence
post-processing and clustering that appears to improve the
total number of retrieved results and plays a role in rank-
ing similar sequences. However, PARSEWeb relies on in-
complete code fragments obtained from GCS and has no
access to API information. Therefore, it must use various
heuristics for type resolution. These heuristics, however,
may not work when the downloaded code contains a com-
plex sequence of method calls that was not used in initial-
ization expressions. Achieving perfection in code search is
near impossible, however, we believe that RECOS internal
mechanisms proved effective, and in the majority of cases,
show a clear support for our three hypotheses.

7 Discussion and future work

Ontologies have been widely recognized as effective
means for knowledge representation. On the other hand,
points-to analysis techniques provide effective mechanisms
for type inference. Both techniques have been indepen-
dently used in solving different software engineering prob-
lems. In this paper, we proposed an approach that combines
the strength of both techniques to improve search for rel-
evant source-code snippets. We have also developed RE-
COS, a code search tool for object instantiation specific
queries. RECOS is currently not tied to a particular IDE.
However, we are currently integrating RECOS into Eclipse
as part of a comprehensive tool for program understanding
and knowledge reuse. In addition to snippet recommenda-
tion and design recovery, this tool will be used to recom-
mend reusable components (e.g., finding source and desti-
nation objects). We are also investigating the application of

8Prospector was configured to show only the first 12 results
9Strathcona did not perform well in this experiment since it does not

have a clear support for object instantiation queries

semantic annotations and domain ontologies to improving
search precision and ranking.

References

[1] A. Alnusair and T. Zhao. Source Code Ontology (SCRO)
and examples of automatic ontology population. http:
//www.cs.uwm.edu/˜alnusair/ontologies.

[2] A. Alnusair and T. Zhao. Towards a model-driven approach
for reverse engineering design patterns. In 2nd Interna-
tional Workshop on Transforming and Weaving Ontologies
in Model Driven Engineering (TWOMDE’09), 2009.

[3] M. Emami, G. Rakesh, and L. Hendren. Context-sensitive
interprocedural points-to analysis in the presence of function
pointers. In ACM Conference on Programming Language
Design and Implementation (PLDI), pages 242–256, 1994.

[4] T. R. Gruber. A translation approach to portable ontology
specification. Knowledge Acquisition, 5(2):192–220, 1993.

[5] R. Holmes and G. C. Murphy. Using structural context to
recommend source code examples. In International Confer-
ence on Software Engineering (ICSE), pages 117–125, 2005.

[6] D. Hou. Investigating the effects of framework design
knowledge in example-based framework learning. In IEEE
International Conference on Software Maintenance, pages
37–46, 2008.

[7] D. Mandelin, L. Xu, L. Bodik, and D. Kimelman. Jungloid
mining: helping to navigate the API jungle. In Programming
language design and implementation, pages 48–61, 2005.

[8] A. Michail. Data mining library reuse patterns using gen-
eralized association rules. In International Conference on
Software Engineering (ICSE), pages 167–176, 2000.

[9] D. Poshyvanyk, A. Marcus, and Y. Dong. JIRiSS-an eclipse
plug-in for source code exploration. In IEEE Conference on
Program Comprehension, pages 252–255, 2006.

[10] M. P. Robillard, R. J. Walker, and T. Zimmermann. Rec-
ommendation systems for software engineering. IEEE Soft-
ware, 2010.

[11] R. Sindhgatta. Using an information retrieval system to re-
trieve source code samples. In International Conference on
Software Engineering, pages 905–908, 2006.

[12] N. Tansalarak and K. Claypool. XSnippet: mining for
sample code. In Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, pages 413–
430, 2006.

[13] S. Thummalapenta and T. Xie. PARSEWeb: a program-
mer assistant for reusing open source code on the web. In
IEEE/ACM International Conference on Automated Soft-
ware Engineering, pages 204–213, 2007.

[14] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan. Soot - a Java bytecode optimization frame-
work. In Conference of the Centre for Advanced Studies on
Collaborative Research, pages 242–256, 1999.

[15] Y. Zhao, J. Dong, and T. Peng. Ontology classification for
semantic web based software engineering. IEEE Transac-
tions on Services Computing, 2(4):303–317, 2009.

[16] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei. MAPO:
Mining and recommending api usage patterns. In European
Conference on Object Oriented Programming (ECOOP’09),
pages 318–343, 2009.

8

http://www.cs.uwm.edu/~alnusair/ontologies
http://www.cs.uwm.edu/~alnusair/ontologies

	. Introduction
	Related work
	Ontology representation of source code
	Recommendation scenario

	Handling Downcasts
	Snippet ranking and selection
	Implementation and evaluation
	Case study: framework usage
	Comparison with other approaches

	Discussion and future work

