
Component Search and Reuse: An Ontology-based Approach

Awny Alnusair and Tian Zhao
Department of Computer Science

University of Wisconsin-Milwaukee, USA
{alnusair, tzhao}@uwm.edu

Abstract

In order to realize the full potential of software reuse,
effective search techniques are indeed essential. In this pa-
per, we propose a semantic-based approach for identifying
and retrieving relevant components from a reuse repository.
This approach relies on building a knowledge base accord-
ing to an ontology model that includes a source-code on-
tology, a component ontology, and a domain-specific ontol-
ogy. Due to the indexing and knowledge population mecha-
nisms we used, our proof-of-concept supports various kinds
of search techniques. However, our experiments show evi-
dence that only pure semantic search that exploits domain
knowledge tends to improve precision. Based on a usability
case study, we argue that semantic search is indeed usable
and practical.

1. Introduction

Systematic software reuse enables developers to use ex-
isting software components for constructing new quality
software systems. Thus, speeding up the development pro-
cess and reducing costs and risks. Failure modes analysis
of the reuse process shows that in order to be reused, a soft-
ware component must be findable and certainly understand-
able [5]. On one hand, understanding the component’s func-
tionality as well as its relationships with other components
in a reuse library is usually hampered due to the lack of
quality descriptions of library services. On the other hand,
finding suitable components is still a significant barrier for
exploiting systematic software reuse.

In this paper, we present an approach for describing,
retrieving, and exploring the various relationships among
software components in object-oriented reuse libraries. In
order to provide a formal and precise representation of li-
brary code, our approach relies on ontologizing software
knowledge.

Ontologies provide means to explicitly describe con-
cepts, objects, properties and other entities in a given appli-

cation domain, and to represent the relationships that hold
among these concepts. Due to their solid formal and rea-
soning foundation, ontologies can play an important role
in domain engineering reuse; they can be used to structure
and build a source-code knowledge base that can be used by
software agents (e.g., search engine) and certainly serve as
a basis for semantic queries [9]. Therefore, ontologies have
been successfully used by various researchers to improve
many aspects of the software engineering processes [12].

Towards this end, we have developed an ontology model
that includes an enhanced software representation ontol-
ogy. This ontology is further extended with additional
component-specific knowledge and automatically popu-
lated with ontological instances representing various pro-
gram elements of a given library. These instances are fur-
ther annotated with respect to concepts from a domain-
specific ontology.

Ontology-based component search is thus performed by
the semantic matching of user requests expressed using
terms from the domain ontology with component descrip-
tions found in the populated knowledge-base. Furthermore,
the knowledge population and indexing mechanisms used
in our approach still allows searching the knowledge base
using the most familiar keyword search. This is particularly
useful when domain ontologies or semantic component an-
notations are lacking or incomplete. Users are thus able to
retrieve components using purely semantic-based queries,
keyword queries, type-based queries or a mixture of all.

2. Ontology model for component reuse

At the core of our ontology model for object-oriented
component retrieval is a Source Code Representation On-
tology (referred to afterwards as SCRO). This ontology pro-
vides a base model for capturing the relationships and de-
pendencies among source-code artifacts. It models major
concepts and features of object-oriented programs, includ-
ing encapsulation, class and interface inheritance, method
overloading, method overriding, and method signature in-
formation. SCRO’s knowledge is represented using the

OWL-DL1 ontology language. OWL is a web-based con-
ceptual modelling language used for capturing relationship
semantics among domain concepts, OWL-DL is a subset
of OWL based on Description Logic (DL) and has desir-
able computational properties for automated reasoning sys-
tems. OWL-DLs reasoning support enables inferring addi-
tional knowledge and computing the classification hierar-
chy (subsumption reasoning). SCRO defines various OWL
concepts that map directly to source-code elements and col-
lectively represent the most important concepts found in
object-oriented programs. Furthermore, SCRO defines var-
ious OWL object properties, datatype properties, and onto-
logical axioms to represent the various relationships among
ontological concepts. SCRO is precise, well documented,
and designed with ontology reuse in mind. The availability
of SCRO online [1], allows researchers to reuse or extend its
representational components to support any semantic-based
application that requires source-code knowledge.

2.1. Domain-specific ontology

Domain ontologies describe concepts and structures re-
lated to a particular domain (e.g. finance, shopping,
medicine, graphics, or the object-oriented programs domain
as specified in SCRO). In our approach to component re-
trieval, we use a domain ontology that conceptualizes each
software library we need to reuse. This ontology provides
a common vocabulary with unambiguous and conceptually
sound terms that can be used to annotate software compo-
nents. Annotations in this context serves two key purposes.
Firstly, both software providers and users can communicate
using a shared and common vocabulary provided by this
ontology. Thus enabling a precise retrieval of API compo-
nents. Secondly, it brings different perspectives to typical
program comprehension tasks. Users can familiarize them-
selves with terminology and conceptual knowledge that is
typically implicit in the problem domain.

To this end, we have developed a mini-ontology for data
retrieval in the Semantic Web applications domain. This on-
tology (referred to afterwards as SWONTO) has been used
during the evaluation of our approach (cf. Section 4) and
serves as a proof of concept that component search can be
significantly enhanced through the use of domain ontolo-
gies. A small fragment of the ontology’s taxonomy is shown
on the upper right pane of Figure 1 and the complete ontol-
ogy is found online [1].

2.2. Component-specific ontology

In the context of component retrieval, we certainly need
a profound semantic description of the component’s in-
ner working structure and its interrelationships with other

1http://www.w3.org/2004/OWL/

components in a given domain. Therefore, we extends
SCROs semantic representations of API structures and en-
rich it with additional component-specific descriptions re-
quired to uniquely identify and retrieve an API compo-
nent. The result is a COMPonent REpresentation ontol-
ogy (referred to afterwards as COMPRE). In addition to
the concepts, axioms, and properties inherited from SCRO,
COMPRE defines its own class hierarchy and relations
for semantic component descriptions. For instance, the
Component concept represents software components in
general and subsumes other OWL classes that represents
Java-specific components such as Method, ClassType,
and InterfaceType. A fragment of the ontologys tax-
onomy is shown on the left pane of Figure 1 and the com-
plete ontology can be examined online [1].

Moreover, COMPRE defines various ontological ax-
ioms and object properties that represent relationships
among software components. These properties link com-
ponents with their corresponding semantic descriptions
specified in the domain-specific ontology. For example,
hasDomainInput and hasDomainOutput and their
corresponding inverse properties are used to annotate in-
dividual software components with domain terms repre-
senting the expected inputs and outputs of the component.
Moreover, COMPRE defines the dependsOn symmetric
object property that defines dependency relationship be-
tween components. describedBy is also defined to link
a component to a domain concept that best describes the
purpose or the nature of the component.

In addition to pure semantic search that is based on
component annotations with respect to a domain ontol-
ogy, COMPRE also defines various datatype properties to
model other metadata about components. These proper-
ties are provided to enable metadata keyword queries that
can be used when semantic annotations are lacking or in-
complete. For instance, the hasInputTerms and the
hasOutputTerms are used to assign meaningful key-
words describing the component’s input and its expected
output.

2.3. Knowledge population

Once the ontology structure is specified, one next needs
to populate the knowledge base with ontological instances
that represent various ontological concepts and their corre-
sponding relationships. Therefore, we have built a knowl-
edge extractor subsystem for the Java programming lan-
guage. Our subsystem performs a comprehensive parsing of
the Java bytecode and captures every ontology concept that
represents a source code element and generates instances
of all ontological properties defined in our ontologies for
those program elements. The generated semantic instances

2

http://www.w3.org/2004/OWL/

are serialized using RDF 2. RDF is web-based language
suitable for describing resources and provides an extensible
data model for representing machine-processable semantics
of data. For each application framework parsed, we thus
generate an RDF ontology that represents the instantiated
knowledge base for the framework at hand. This knowledge
base is managed by Jena [8], an open source Java frame-
work for building Semantic Web applications.

The process of generating semantic instances for the
concepts and relations specified in SCRO is completely au-
tomatic. However, the process of annotating components
according to COMPRE’s object properties is currently man-
ual as it is the case for semantic annotations in general.
Our tool though provides means for inserting these annota-
tions directly into the knowledge-base, thus gradually build-
ing semantic descriptions for a particular API that can be
shared, evolved, and reused by a community of users. On
the other hand, metatdata modelled by COMPRE’s datatype
properties is generated automatically via direct parsing of
the source-code. We thus capture and normalize method
signatures, identifier names, source-code comments, and
available Java annotations in order to obtain a meaningful
keyword descriptions of components. These descriptions
are lexically analyzed, stored, and indexed using the to-
kenization and indexing mechanisms provided by Apache
Lucene 3, an open-source full-featured text search engine.

In the next section, we show how the knowledge gener-
ated using this knowledge extractor sub-system can be used
for component search. For an extended discussion of our
ontologies, complete knowledge population samples, we re-
fer the reader to our ontologies website [1].

3. Ontological search

Listing 1 shows a partial RDF description obtained
during the knowledge population phase for a Jena API
method, the create method. This method belongs to the
QueryFactory class and usually used to create a Query
object given the specified input. This RDF description
clearly captures the component’s metadata at the semantic
and syntactic level.

The underlying data structure of RDF is a labeled di-
rected graph. Each node-arc-node in this graph represents a
triple that consists of three parts, subject, predicate and ob-
ject. Consider Listing 1 for example, the described method
in this snippet, create[..], is always the subject, ontol-
ogy properties are predicates, and objects are either a re-
source, unlabeled node (blank node) or a literal value. For
example, the first triple below uses a property from SCRO
to assert that the method has an input parameter of type
String. The second triple associates this parameter with

2http://www.w3.org/TR/rdf-primer
3http://lucene.apache.org/

few terms describing its purpose. The third triple, however,
tags the same input parameter with a meaningful concept
(QueryText) from the domain ontology. Thus, giving the
parameter an agreed-upon and meaningful description other
than terms or the semantically vague String type.

1. create[..] scro:hasInputType String

2. create[..] compre:hasInputTerms

"query string"

3. create[..] compre:hasDomainInput

[a swonto:QueryText]

@base <http:.../ontologies/kb.n3>
PREFIX scro: <http:.../ontologies/scro.owl#>
PREFIX compre: <http:.../ontologies/compre.owl#>
PREFIX swonto: <http:.../ontologies/swonto.owl#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

<#QueryFactory.create[String,String,Syntax]>
a scro:StaticMethod ;
scro:hasInputType <#String> ;
scro:hasInputType <#String> ;
scro:hasInputType <#Syntax> ;
scro:hasOutputType <#Query> ;
scro:invokesMethod <#parse[Query,String,Syntax]>;
scro:hasSignature "create[String,String,Syntax]";

compre:describedBy [a swonto:QueryCreation];
compre:hasDomainInput [a swonto:QueryText];
compre:hasDomainInput [a swonto:URI];
compre:hasDomainInput [a swonto:QueryLanguageSy-
ntax];
compre:hasDomainOutput[a swonto:ExtendedQuery];

compre:hasInputTerms "query string ...";
compre:hasInputTerms "base URI ...";
compre:hasInputTerms "query syntax URI ...";
compre:hasOutputTerms "query ...";
dc:description "create query ...";

....

Listing 1. RDF descriptor for an API method

This multi-faceted description of components enables
four different types of queries against the knowledge base:
a) type or signature-based queries; b) metadata keyword
queries; c) pure semantic-based queries; or d) blended
queries of the previous three types.

However, we focus the discussion on pure semantic-
based queries that rely on domain-specific knowledge.
Primarily, search techniques that rely on variations of
keyword-based search suffer from synonymity and poly-
semic ambiguity that often lead to low recall and precision.
On the other hand, signature matching techniques cannot
distinguish between components that have the same signa-
ture but serve different purposes, e.g. using Jena API to
create a new query vs read a query from a file. In
semantic search, however, these limitations are completely
dealt with since the semantics of each of the types in sig-

3

http://www.w3.org/TR/rdf-primer
http://lucene.apache.org/

natures are encoded and processed during search. Besides
addressing knowledge representation effectively, semantic
search offers extensible solutions to component retrieval.
Since we are focusing on API usage and reuse, the de-
scriptions shown in Listing 1 capture the component’s inter-
face and its relationships with other components. However,
these description can be easily extended to capture other
facets (e.g., component’s environment) via introducing ad-
ditional ontological properties.

Reasoning is one of the primary added benefits in seman-
tic search. In addition of classifying and checking the con-
sistency of our ontologies, a DL reasoner can also be used
to inferring and thus enriching the knowledge base with ad-
ditional knowledge that is not explicitly stated. Thus, play-
ing a vital role in improving search precision and recall in
comparison with other search techniques. DL Subsumption
reasoning, for example, is typically used to establish sub-
set inclusion relationships between different concepts and
properties in the ontology. Consider the descriptions in
Listing 1 for example, when pure semantic-based queries
are used, users need only to provide domain concepts de-
scribing the component’s interface. Therefore, if the user
provides SemanticQuery as a domain output of the re-
quested component, the method shown in the listing would
still match this request since SemanticQuery subsumes
ExtendedQuery as specified in the subsumption hierar-
chy of our domain ontology. Thus, automatically enabling
an implicit form of query expansion.

It is notable that semantic-based retrieval alleviates many
problems typically faced by tools that rely on exact key-
word or type matching. One of the strengths of our ap-
proach, however, is the ability to utilize our various ontolo-
gies in order to perform blended search against the knowl-
edge base. In particular, this is helpful when components in
the knowledge base are not completely annotated or when
users are still in the process of becoming familiar with
the ontology. Consider for example a user who wishes to
find a component in which the component’s domain output
type (SemanticQuery) and one of the actual input types
(Syntax) are known. Furthermore, since the user is not
sure about the other input types, she wants to provide a few
terms to filter out the results. This request can be expressed
using the following query in DL-like syntax:

Query ≡ compre : Component u
(∃compre : hasDomainOutput .

swonto : SemanticQuery) u
(∃scro : hasInputType . kb : Syntax) u
(∃compre : hasInputTerms value ′′base uri′′)

As expected, executing this query returns not only the
method shown in Listing 1 but also other unrelated meth-
ods. It turns out that the input terms specified in the query
are very popular and are used to describe API methods that

are used to create, read or even parse a semantic
query. Nevertheless, this search mechanism is flexible since
it allows a wide range of queries to run against the knowl-
edge base. In fact, the expressive power provided by our
ontologies allows users to express their queries in more de-
tails than would otherwise be expressed with any alterna-
tive method. For instance, assume that the user was able to
obtain a Query object as described in the previous exam-
ple. The next natural step is to find a component that can
take this query as input, execute it, and return the required
results. Browsing the Jena API looking for such a compo-
nent or even querying using typical keyword-based queries
would not return an answer since there is an intermediate
query execution object that must be obtained to complete
the task. This appears to be a dead end. However, using
semantic search, this request can be expressed fairly easily
as follows:

Query ≡ compre : Component u
(∃compre : hasDomainInput .

swonto : SemanticQuery) u
(∃compre : hasDomainOutput . ∃ compre :

hasDomainOutput . swonto : ResultSet)

This query expresses the fact that we are looking for a com-
ponent that takes a semantic query as input and returns an-
other component that returns a query solution. Thus, query-
ing for multiple components at the same time.

3.1. Implementation and ranking mechanisms

We have implemented this approach in a tool called
CompRE, conveniently named after the main ontology in
our model. CompRE is deployed as a plug-in for the
Eclipse Integrated Development Environment (IDE). Fig-
ure 1 shows a snapshot of CompRE’s main views in the
Eclipse workbench. When loaded for the first time, Com-
pRE processes the library code and the component ontology
in order to generate the initial knowledge base as described
in Section 2.3. This process is completely automatic and ef-
ficient (it only took 4.5 seconds for parsing and processing
the Jena framework). CompRE also includes a module that
allow users to tag components with semantic references that
corresponds to concepts from the domain ontology. These
annotations entered via drag and drop mechanisms, cap-
tured by the storage module, and stored automatically in
the knowledge base. Upon the conclusion of the knowledge
population process, a knowledge repository is created and
becomes ready for answering user requests.

CompRE provides two separate views for formulating
queries. The first view is provided as a simple data entry
form as shown in the figure. In each entry box, users need
to provide search restrictions that are either prefixed with
an ontology name or provided as plain keywords enclosed

4

Figure 1. CompRE: showing the component ontology, domain ontology, and the main search view

within quotes. As described in the previous section, using
the compre-kb prefix tells the system that this is in fact an
actual API type specified in the knowledge base. However,
the swonto prefix refers to a concept from the currently
active domain ontology. Since the domain ontology can
be different for each API, its name is provided as an exter-
nal configuration parameter. Free-text requirements in each
query may optionally utilize all fuzzy extensions supported
by the Lucene’s query parser, thus allowing a full-featured
keyword-based search. Once the form is filled, CompRE
collects the search requirements and automatically gener-
ate a query using the SPARQL 4 query language, it then
executes this query against the knowledge base. CompRE
also provides a query answering view for advanced users
who wish to edit their own SPARQL queries directly, there-
fore, gaining full control over various aspects of the compo-
nent ontology. For instance, users may wish to specify that
the desired component extends a particular component
or perhaps usedBy a certain number of components as a
measure of its popularity in the target library. Regardless
of the data entry mechanism used, CompRE executes the
query, ranks the retrieved instances, and presents the result
in a viewer that enables further exploration of each recom-
mended component.

Ranking the retrieved candidates according to their rele-
vancy to the user needs saves time and efforts. While al-
lowing blended queries in our approach ensures flexibil-
ity and robustness, it however complicates the ranking pro-
cess. When blended or pure syntactic queries are submitted,
we initially rely on the traditional, however solidly proven,
scoring mechanisms supported by Lucene. In order to im-

4http://www.w3.org/TR/rdf-sparql-query/

prove this initial ranking, we refine this initial order based
on suitability measures that consider the current user con-
text. We thus parse the code that is currently being de-
veloped and create a profile that includes all visible types
that are either declared by the programmer or inherited in
the user’s context. We further analyze each retrieved can-
didate’s signature in terms of the new input types that this
candidate will introduce into the current context if selected
by the user. Naturally, candidates that introduce more types
should be assigned a lower rank value. However, finding the
newly introduced type in the context profile, will not count
against this candidate’s score.

With the absence of keywords in user queries, we ap-
ply only context-based heuristics such that candidates with
exact matches are put at the top of the list while other can-
didates are ranked based on the number and type of their
input and output types. For example, consider a user who is
trying to search for a component that requires two particular
input types, namely I1 and I2. Assume that the repository
contains three components, namely C1, C2, and C3. Lets
also assume that C1 is an exact match, C2 has only one in-
put type (I1), and C3 requires three input types (I1, I2, and
I3). The system is then ranks C1 first, C2 is ranked second,
and C3 is in fact the least desired since it will introduce a
new type to the user context, it is thus included in the result
set to improve recall, however, ranked last. These heuristics
are simple, easy to implement, and work surprisingly well.

4. Experiments and results

Due to the lack of independent and standard benchmark
test data, search tools evaluation is, to some degree, sub-
jective. However, we designed our experiments such that it

5

http://www.w3.org/TR/rdf-sparql-query/

increases our confidence level of a fair evaluation. We have
selected the Jena framework for testing CompRE, the do-
main ontology described in Section 2.1 fits naturally in the
Jena’s application domain.

4.1. Experiment: component search

This experiment is designed to reveal the overlap be-
tween various search methods that are supported by Com-
pRE. The fundamental guiding hypothesis we test in this
experiment is that pure semantic-based representation and
annotation of library components improve search precision
when compared with other techniques. Precision is defined
as the ratio of the number of relevant component instances
that are recommended by the tool to the total number of rec-
ommended instances. Recall is the other commonly used
metric in evaluating search systems, it is defined as the ra-
tio of the number of relevant component instances that are
recommended to the total number of relevant components
in the repository. However, in these experiments we fix re-
call since we are searching for distinct components, i.e, the
component we are searching for is either found or not found.

We have selected twelve programming tasks, six of these
tasks were carefully designed by us and the remaining tasks
were collected from the Jena developers forum5. Each of
these tasks requires a query to be fired in order to search for
a component that is required to complete the task. These
tasks are diverse enough and cover various aspects of the
problem domain. For space limitations, we do not include
these tasks here, rather, an extended discussion of the tasks
and results can be found online [1].

We then prepared the necessary coding environment and
formulated four search queries for each task, i.e, one query
for each kind of search supported by CompRE. Precision
summery graph for running these queries is shown in Fig-
ure 2.

Figure 2. Precision graph for Jena queries

As expected, semantic search tends to perform poorly
when the components in the knowledge base are incom-
pletely or incorrectly annotated. In Q11 for example, a

5http://tech.groups.yahoo.com/group/jena-dev/

required Jena method, makeRewindable, was not com-
pletely annotated with the proper return type. Thus, search
produced spurious components since only the input type
was used during search. However, in most cases when
proper tags exist, semantic search can precisely describe
the needed component and improve overall precision val-
ues as seen in Figure 2. Metadata keyword-based search
performs poorly due to the two well-known fundamental is-
sues of polysemy and synonymy. These two problems be-
come even more evident when searching for software com-
ponents. This is due in part to inconsistent and often in-
complete API descriptions of library code. Nevertheless,
keyword search tends to return an exact match when a par-
ticular keyword is used to describe only a single component
in the library (e.g., clone in Q4).

Signature based queries tend to yield low precision in
cases where the component signature includes one or more
semantically vague types such as the Java String type. The
best example to illustrate this notion is Q3. This task re-
quires accessing a query service over a HTTP connection,
therefore, one needs to provide, among other things, the
URL of this service and the text representation of the query;
both of which are specified as String objects. Unless there
is a clear semantic descriptions for such parameters, the
matchmaking process would return many false positives
(low precision). Blended search, however, performed sur-
prisingly well. We believe that it is often the case that the
user is certain about a single API type that is used in the
component’s signature or a certain keyword that precisely
describes some aspect of the component. These descrip-
tions can also be coupled with semantic annotations to pro-
duce higher precision. These results indicate that blended
search needs to be formally investigated in more details.

Ranking and running time analysis have been computed
as well. On average, semantic search achieved 1.75 rank
over twelve queries, i.e., the desired component was ranked
either at the first or at most the second position. This
ranking score is relatively comparable with other search
schemes in which they achieved 2.27, 1.8, and 1.66 for key-
word, signature, and blended search, respectively. However,
the average observed response times were 15.5, 9, 2.5, for
semantic, blended, and signature and keyword searches, re-
spectively. All experiments were performed on a Windows
XP machine with 1.8GHZ Intel processor and 1GB mem-
ory. This relatively lower performance for semantic queries
is a result of having our queries run through the reasoner.
In general, search time for all search methods is suscepti-
ble to increase as the size of the knowledge base increases;
in the case of semantic search, speed is continuously im-
proving as reasoners evolve. Achieving perfection in com-
ponent search is near impossible, however, we believe that
CompRe’s internal mechanisms proved effective, and in the
majority of cases, show a clear support for our hypothesis.

6

http://tech.groups.yahoo.com/group/jena-dev/

4.2. User study

This experiment is designed to asses the usability of se-
mantic search and to understand the possible difficulties
faced by end users in learning and using domain ontologies
for successfully completing a particular search task against
an unfamiliar API.

Six graduate-level MIS students from Northwestern Uni-
versity have voluntarily agreed to participate in this study.
Although all students have at least seven months of Java ex-
perience and a good working knowledge of Semantic Web
technologies, no student has been directly exposed to the
Jena API. We delivered a one-hour tutorial that includes a
brief introduction to the Jena API, brief introduction to the
domain ontology, and a sample training task that explains
CompRE’s semantic search features. We then charged each
student with other four independent Jena API programming
tasks that vary in scope: T1) data set creation and handling
of multiple RDF gtaphs; T2) query construction and execu-
tion over a given ontology model; T3) result manipulation
of query solutions; and T4) access and treatment of remote
services. On average, two distinct components are needed
to successfully complete a given task. An environment is
setup for each task with a skeleton code, each student is
then asked to finish three consecutive tasks using only Com-
pRE’s pure semantic search while the last task in the se-
quence must be completed using other alternative methods
of student’s choice.

Table 1 shows task completion time measured from the
time in which the task is presented to the student until the fi-
nal correct answer is submitted. Numbers appeared in bold-
face represents tasks completed using semantic search while
other numbers are underlined.

Table 1. User study statistics
Time (Minutes)

T1 T2 T3 T4
S1 35 22 27 13
S2 33 35 20 11
S3 45 43 31 33
S4 32 40 22 15
S5 52 12 43 8
S6 21 16 18 40

Avg (Semantic) 37.5 21.25 23.6 16
Avg (Alternative) 34 41.5 43 40

The most significant conclusion we can draw from these
numbers is the correlation between the time taken by stu-
dents to complete the first semantic task and the last one
in the sequence. In most cases, there was a significant re-
duction in time as students became more familiar with the
domain ontology and thus more able to construct more pre-

cise queries. This is confirmed by the responses we ob-
tained upon the conclusion of the experiment, four out of
six students indicated that there is a small initial learning
curve that was reduced fairly quickly as they became more
comfortable with the API vocabulary represented in the do-
main ontology. Since the last task has to be done without
CompRE’s assistance, most students argued that this task
could have been completed faster had CompRE’s assistance
been allowed. A domain ontology provide a concise de-
scription of API content and vocabulary. This knowledge
can be used also to successfully finishing a coding task that
may require more than one component. Consider task T2
for example, this task requires instantiating an intermediate
object of type QueryExecution, we suspect that the co-
herent representation of ontology concepts and axioms aid
users in arriving at such conclusions during the initial time
invested in understanding and learning the taxonomy.

One may conclude that completing the last task (alterna-
tive task) should be relatively easier. After all, students have
been using the same API, thus, the knowledge gained about
this API after completing the first three tasks can be helpful.
However, when examining the results, there is no dramatic
improvement in response time for using alternative meth-
ods. We suspect that these alternative methods (e.g., ex-
ploring documentation, searching for code in the Web, etc.)
do not provide a systematic and focused learning experi-
ence for programmers. In this study however, we did not
intend to make a systematic comparison between semantic
search mechanisms with normal search practices used by
programmers. However, the obtained results clearly sup-
port our hypothesis and show that semantic search, in most
cases, yield better API learning experience and can certainly
increase programmer’s productivity.

Overall, students provided positive comments about
CompRE and semantic search. Two students indicated that
the SPARQL query view was indeed helpful and used in for-
mulating more complex queries. However, these students
requested a thorough integration of the domain ontology
including its object properties into the CompRE’s domain
ontology view. Only one student reported a relative diffi-
culty adapting to a new search approach after being familiar
with other alternative methods. This user also requested a
Tooltip feature such that when the user hovers over an on-
tology concept in the domain ontology view, a hover box
appears with class description. Based on this sound and
helpful feedback, we are currently adding new features as
well as modifying CompRE’s interface so it becomes more
expressive.

5. Related work

Due to the benefits acquired by systematic reuse, many
researchers have proposed solutions and tackled the reuse

7

problem from various perspectives. Many approaches
(e.g., [3]) employ traditional knowledge representation and
variations of signature matching or keyword-based re-
trieval. Similar to CompRE, other tools (e.g., [11]) leverage
software understanding by being embedded in the develop-
ment environment. However, unlike CompRE, these tools
rely on a local repository of sample client code to search for
components. CodeBroker [11] for example, use a combina-
tion of free-text and signature matching techniques. In or-
der to retrieve appropriate matches, the user must write high
quality doc comments that precisely describe functionality.
If the user comments did not retrieve satisfactory results, the
system considers the signature of the method immediately
following the comments. Finding a well documented code
to populate the repository with is highly unlikely, especially
in open-source and legacy software.

Other component retrieval approaches (e.g., [6], [7]) ap-
ply automated testing techniques to analyze a corpus of
client code harvested from the Web. Code Conjurer[6] for
example, helps agile development users in finding suitable
components on the basis of unit test cases. Therefore, users
of the system has to write such test cases in order to invoke
the system. Once invoked, the system contacts a remote
server that finds suitable candidates based on the compo-
nent’s interface specified in the test case.

Other semantic-based approaches have also been pro-
posed. However, the full potential of utilizing domain
knowledge was not explored. Sugumaran and Storey[10]
proposed an approach that utilizes domain models; a do-
main ontology is used mainly for term disambiguation and
basic query refinement for keyword-based queries; these
keywords are then mapped against the ontology to ensure
that correct terms are being used. However, no semantic-
based descriptions of components have been used. Other
proposals ([2] and [4]) employ ontologies to addressing the
knowledge representation problem found in previous ap-
proaches. In [4], software assets are classified into domain
categories (I/O, GUI, Security, etc.) and indexed with a do-
main field as well as other bookkeeping fields to facilitate
free text search. Although the SRS [2] proposal uses the
same indexing mechanism, it maintains two separate on-
tologies; an ontology for describing software assets as well
as a domain ontology for classifying these assets. However,
the structure of the source code assets and the semantic re-
lationships between those assets via axioms and role restric-
tions were not fully utilized.

6. Conclusions and future work

We proposed an approach for component reuse. In addi-
tion to supporting pure semantic-based search, our approach
also supports other kinds of search techniques. However,
our studies showed evidence that pure semantic search that

utilizes domain knowledge not only usable and achievable,
but also improves precision of search results. Our results
also showed that blended search has a great potential, we are
currently conducting more case studies to asses the value
of blended search. There are also two other future work
directions. Firstly, ranking reused candidates has always
been a challenge, therefore, we are currently investigating
how could ranking be improved using semantic technolo-
gies. Secondly, we have not yet investigated how could one
motivate library providers to ship domain ontologies with
their software, or how could individually created ontologies
be shared by a community of users.

References

[1] A. Alnusair and T. Zhao. Ontology models, framework
ontolgies, and CompRE evaluation. Available online at:
http://www.cs.uwm.edu/˜alnusair/compre.

[2] B. Antunes, P. Gomez, and N. Seco. SRS: A software reuse
system based on the semantic web. Proceedings of the 3rd
International Workshop on Semantic Web Enabled Software
Engineering (SWESE), 2007.

[3] S. Bajracharya, O. Ossher, and C. Lopes. Sourcerer: An
internet-scale software repository. In First International
Workshop on Search-driven Development: Users, Infras-
tructure, Tools and Evaluation (SUITE’09), 2009.

[4] F. A. Durao, T. A. Vanderlei, E. S. Almeida, and S. R. Meira.
Applying a semantic layer in a source code search tool. In
Proceedings of the 23rd ACM Symposium on Applied Com-
puting, pages 1151–1157, Fortaleza Ceara, Brazil, 2008.

[5] W. B. Frakes and K. Kang. Software reuse research: Status
and future. IEEE Transactions on Software Engineering,
31(7):529–536, July 2005.

[6] O. Hummel, , W. Janjic, and C. Atkinson. Code Conjurer:
Pulling reusable software out of thin air. IEEE Software,
25(5):45–52, 2008.

[7] O. Hummel and C. Atkinson. Extreme Harvesting: Test
driven discovery and reuse of software components. In Pro-
ceedings of the IEEE International Conference on Informa-
tion Reuse and Integration (IRI’04), 2004.

[8] B. McBride. Jena: a semantic web toolkit. IEEE Internet
Computing, 6(6):55–59, 2002.

[9] F. N. Noy and D. L. McGuinness. Ontology development
101: A guide to creating your first ontology. Stanford
Knowledge System Technical Report KSL-01-05, 2001.

[10] V. Sugumaran and V. C. Storey. A semantic-based approach
to component retrieval. ACM SIGMIS DATABASE, 34(3):8–
24, 2003.

[11] Y. Ye and G. Fischer. Reuse-conductive development envi-
ronments. The International Journal of Automated Software
Engineering, 12(2):199–235, 2005.

[12] Y. Zhao, J. Dong, and T. Peng. Ontology classification for
semantic web based software engineering. IEEE Transac-
tions on Services Computing, 2(4):303–317, 2009.

8

http://www.cs.uwm.edu/~alnusair/compre

	. Introduction
	. Ontology model for component reuse
	. Domain-specific ontology
	. Component-specific ontology
	. Knowledge population

	. Ontological search
	. Implementation and ranking mechanisms

	. Experiments and results
	. Experiment: component search
	. User study

	. Related work
	. Conclusions and future work

