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Abstract—Multimedia retrieval is a problem domain involv-
ing salient features extraction, machine learning, indexing,
and retrieval. There are a variety of implementations for
these tasks, which are difficult to compose and reuse due to
the interface and language incompatibility. Because of this
low reusability, researchers often have to implement their
experiments from scratch and the resulting programs are
not optimized for efficiency and cannot be easily adapted
for parallelization. In this paper, we present PIR (Pipeline
Information Retrieval), a domain specific language (DSL)
for multimedia feature manipulation. The goal is to unify
the programming tasks for feature-related programming in
multimedia retrieval experiments by hiding the programming
details under a flexible layer of domain specific interface.
This DSL enables us to optimize the feature-related tasks
by compiling the DSL programs into pipeline graphs, which
can be executed using a variety of strategies to eliminate
redundant computation and enable parallelization and change
propagation.
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I. INTRODUCTION

Multimedia Information Retrieval (MIR) refers to the
research endeavor that centers on searching knowledge from
multimedia data. In the last decades, substantial progress
has been made in different MIR research areas, such as
multimedia feature extraction learning and semantics high
performance indexing and query. As a result of substantial
progress of MIR research and applications, many related
software packages, libraries, and systems have been de-
veloped and evaluated using a wide range of multimedia
data. Some prominent examples include the GIFT, FIRE,
Caliph & Emir, LIRE, ImageTerrier, and OpenIMAJ. While
substantial progress in both MIR research and software
development have been made, in practice, we have witnessed
that code reuse and system composition for MIR research
are still very difficult and new systems developed based
on existing MIR implementation are not optimized for
efficiency and cannot be easily adapted for parallelization,
which is essential for handling large multimedia data sets.
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To address these problems, we introduce a domain specific
language: PIR ! for developing MIR applications. PIR is an
embedded DSL using Scala as the host language. Programs
written in PIR are plain Scala programs and the DSL
implementation is a Scala library. Users can construct MIR
applications with simple DSL constructs that focus more
on the high-level logic of the MIR application and less
on the implementation details for resource management,
optimization, and parallelization. PIR provides an abstrac-
tion layer over the concrete implementations of various
MIR algorithms for feature extraction, machine learning,
indexing, and query. This layer separates the construction
of a MIR workflow from its execution so that users can
choose optimal execution strategies with minimal changes
to the program source. Since PIR is embedded in Scala, it
is able to utilize the type system of Scala to ensure that
PIR programs are well-typed. That is, if a DSL program
compiles in Scala, then it will execute according to the
DSL semantics. The execution of a PIR program includes
two stages. In the first stage, the program is “compiled”
into a pipeline graph through a Scala library. In the second
stage, the pipeline graph is executed according to a specified
optimization strategy.

A. Examples

We demonstrate the utility of our DSL with two examples.

Listing 1: Image Query Example

img = load("index_image")
gImg = load("query_image")

idx = index (f_lucenelIdx,
img.connect (f_cedd),
img.connect (f_fcth))
g = query(f_weightedQuery, idx,
gImg.connect (f_cedd),
gImg.connect (f_fcth))
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g.out (4)

Listing 1 is an example for image retrieval using
two global image features: Color and Edge Directivity

A preliminary implementation is at https:/github.com/pir-dsl/pir



Descriptor (CEDD) and Fuzzy Color and Texture His-
togram (FCTH). This example includes predefined op-
erators and functions for MIR operations. For example,
load ("index_image") loads images from the file path
index_image. In img.connect (f_cedd), the loaded
images are connect to a projection function £_cedd, which
extracts CEDD features from images. Also, index operator
creates a Lucene index using f_luceneIdx and the ex-
tracted features, while query operator applies the function
f_weightedQuery to an index and query features.

The first 4 statements in Listing 1 construct a pipeline
graph with each vertex of the graph corresponds to an op-
eration such as image loading, feature extraction, indexing,
and querying. The actual computation is delayed until the
last statement, which executes the pipeline graph using 4
parallel threads to answer the query g. Delayed execution
allows the DSL runtime to manage how to execute the
function of each pipeline vertex and how the intermediate
results of the vertex are stored and reused. In this example,
the image loading, feature extraction, and indexing vertices
are executed in parallel. The caching of the intermediate
results is automatic so that they can be stored in memory
if they fit and stored in file system otherwise. Note that the
functions such as £_cedd, £_fcth, and £_lucenelIdx
are wrappers for implementations adapted from the other
MIR libraries. Users can expand the capability of the DSL by
defining similar functions with appropriate type signatures.

Listing 2: Transmedia Query Example

1 txt = load("training_text")

2 img = load("training_image")

3 qImg = load("query_image")

4

5 siftImg = img.connect (f_sift)

6 1Model = train(f_ldaTrain, txt)

7 kModel = train(f_kMeansTrain, siftImg)

8

9 ccaModel = train(f_cca,

10 txt.connect (f_ldaPrj, 1Model),

11 siftImg.connect (f_cluster, kModel))
12 p = glmg.connect (f_sift)

13 .connect (f_cluster, kModel)

14 .connect (f_transmedia, ccaModel)

15 p.out (4)

The second example (Listing 2) illustrates a transmedia
multi-modal retrieval experiment, which uses a train op-
erator to apply training algorithms such as LDA, K-Means,
and Cross Correlation Analysis (CCA) algorithm to text and
image data. The CCA model is trained on clustered image
features and topic distributions of text. The example finally
applies query image to the trained CCA model to obtain
the related text documents. Similar to the first example, the
actual computation does not start until the last statement.
Note that users can apply method chaining for consecutive
feature transformations. For example, line 12—14 in Listing 2

s = Statement
T=e€ assignment
| zf=f update
| e.out(n) execution
| s;8 sequence
e = src|drain | pipe Expression

sre = load(f) load source
pipe == e.connect(f) projection
| e.connect(f,e’)  projection with model
drain == train(f,e) model
| index(f,e) index
| query(f,eie) query
f functions and parameters

Figure 1: Pipeline DSL Language Syntax

transforms a raw image file to sift features, to a distribution

on k-means centroids, and to correlated text documents.

We can make changes to the pipeline graph and then
run the query again. For example, the following statements
changes the file path for the text files and then run the
projection p again.

txt.f =
p.out (4)

"training text2"

The second run of p.out (4) uses a runtime semantics
with change propagation such that the intermediate results
of pipeline vertices that depend on txt, such as 1Model,
ccaModel, and p, are recomputed while the results of other
vertices, such as siftImg and kModel, are reused.

II. SYNTAX

The formal DSL syntax is shown in Figure 1, where
a program consists of a sequence of statements and each
statement is an assignment, an update, or an execution. Each
assignment associates an expression with a local variable.
The update statement changes the function (and parameters)
associated with a pipeline vertex. The execution statement
in s;e.out(n) triggers the execution of the pipeline graph
compiled from s and e and outputs the results of the
vertex compiled from e with n threads. The expressions
include source, drain, and pipe. A source expression loads
the raw data files from a directory and we use a function
f to represent the load operation with path to the data file
embedded in f. A pipe expression projects input data using
a function and it may take a model expression as a second
parameter. The pipe expression represents the extraction of
features such as global/local features of images and term
frequency histograms of text documents. The second type of
pipe expression is suitable for extracting features such as the
LDA topic distribution, which requires a LDA topic model
obtained from training. The drain expressions include model,
index, and query. The model expression represents the



training of a model. Index and query expressions represent
the index and query operations. Each of the drain expression
takes a function as parameter. The model expression uses its
second parameter as training data. The index expression cre-
ates an index for its second parameter. The query expression
takes an index e; and a query input e to compare against the
index. Note that it is straightforward to expand the syntax
to include cases such as index(f,eq,...,e,).

A. Pipeline Graph

The pipeline that we are concerned with can be described
with a graph of the edges E, where the vertices are instances
of load type V}, projection type V,,, projection with model
type Vpm, indexing type V;, training type V3, and query type
Vg. Each vertex type has a field f to store the function/-
parameter that serves the purpose of file loading, feature
extraction (projection), training, indexing, or querying. Each
vertex type has a field data to store the intermediate results
and a flag ¢sDirty to indicate whether the data field of
the vertex needs to be updated. Note that not all types
of connections between vertices are legal. For instance, it
does not make sense to connect V; to V},. The DSL relies
on Scala’s type system to statically rule out incorrect DSL
programs that can be compiled into incorrect pipeline graph.

Next, we define the semantics for the DSL programs.

III. FROM DSL TO PIPELINE GRAPH

We first describe the “compilation” of a DSL program into
a pipeline graph. The formal details are omitted due to lack
of space. The compilation uses a set of transformation rules,
one for each type of expression e and statement s. Each
expression rule, [eJo = (v, E), transforms an expression
e to a new vertex v and a (possibly empty) set of edges E
given a runtime state o that maps variables to vertices. Each
statement rule, [s](o, E) = (o/, E’), processes a statement s
and changes the state o to another state ¢’ while producing
a new set of edges E’. A new vertex is created in v =
new V(f), where V is the type of the vertex v and f is
the function assigned to v.f. In the constructor of V', we
initialize v.isDirty to true and v.data to empty.

The compilation of a program s can be written as
[s](9,0) = (o, E) with an empty initial state and empty
set of edges, where FE is the set of pipeline edges compiled
from s. The execution statement e.out(n) triggers actual
computation by calling EXECUTE(E U E’,v,n), which is
a call that starts the execution of the vertex v reduced
from e using the edges F U E’ compiled from the previous
statements and e. The call of the form EXECUTE(E,v,n)
is executed using various algorithms explained in the next
section.

IV. EXECUTION OF THE PIPELINE GRAPH

After transforming a PIR program into a pipeline graph,
we execute the pipeline graph using several variations of
execution semantics.

A. Runtime semantics with sequential execution

The algorithm for sequential execution of the pipeline
graph computes the results for each vertex after all its
predecessors’ computation has completed. The algorithm
does not run a vertex v’s function more than once since
its computation results are stored in v.data once the run is
completed. The main part of the algorithm is a loop that
uses a stack jobS to hold all the vertices that are waiting
for results. Initially, we put the starting vertex v in the stack.
In the loop, we examine the vertex v on top of the stack to
see if it is ready to run. If v’s predecessors’ data is ready,
then we apply the function f of vertex v to the data of all
v’s predecessors. If the data is not ready, then we push v’s
predecessor vertices that need to compute results onto the
stack and continue. We repeat the loop until jo0bS becomes
empty.

B. Runtime semantics with data and pipeline parallelism

We can improve runtime performance with data paral-
lelism. The algorithm for parallel execution computes the
results of a projection or indexing vertex v in parallel by
dividing up the input data into n portions. Then it uses n
number of threads, where each thread ¢ applies the vertex
function f to a portion of the input data in parallel and
stores the results in the ¢ element of an array r. After all
threads have terminated, the result array r is merged into
the final results to store in v. While data parallel execution
can speed up computation of projection or indexing vertices,
the intermediate data needs to be stored in its entirety, which
may result in exhaustion of main memory if v.data is stored
in memory or a large number of I/O operations if v.data is
stored in file system.

To mitigate the storage problem, we can also implement
an execution semantics using pipeline parallelism where we
use one thread per vertex. The data of a projection and
indexing vertex v is divided into NN portions but not all
of them needs to be stored. The computation of vertex v
proceeds in a loop from % = 0 to N — 1 such that at step
t = k, the thread of v checks if the kth portion of v’s
predecessors is ready: if so, it will compute the kth portion
of v’s results. If the threads are synchronized by the portion
index, then only 1/N'th portion of each vertex’s results need
to be stored in memory.

C. Runtime semantics with change propagation

In multimedia retrieval research, experiments are often
executed many times with various changes to the algorithms,
source data, and parameters. Since most experiments take a
long time to complete, it is useful to avoid recomputing
results that are not affected by the changes in experimental
setup. In the DSL syntax, programmers can apply changes to
a vertex using the statement x.f = f, which may be changes
to the source data or changes to the algorithms or param-
eters for feature extraction, machine learning, indexing, or



querying. If in an update statement x.f = f, x is compiled
to the vertex v, then we set the flag v.isDirty to true. We
define the runtime semantics with change propagation by
first inferring the vertices that are affected by the changes
based on the dependency relation in the pipeline graph and
then recomputing the results of the affected vertices.

V. IMPLEMENTATION WITH SCALA

In general, we can choose any host language to embed
our DSL. Practically, Scala is a good choice as it provides
advanced features such as lazy evaluation, implicit conver-
sion, closures, mixins, and pattern matching, which greatly
simplify our DSL design and are flexible enough for us to
plug in and plug out artifacts as we need. For instance, we
create vertices (or nodes) in different stages (source, pipe,
and drain) with the help of implicit conversion. Moreover,
Scala is 100% binary compatible with Java code, which
allows use to easily reuse a large number of the existing
MIR Java libraries. In our experiments, we used the LIRE
image retrieval framework to extract global and local image
features, MALLET for LDA (Latent Dirichlet Allocation)
modeling, Apache Lucene for indexing and query, and a Java
library for Canonical Correlation Analysis for transmedia
query in experiments in Section VI.

A. Implicit conversion

Let’s consider the example in Listing 1. As explained in
Section III, the PIR program is “compiled” into a pipeline
graph. In our preliminary implementation, the “compilation”
involves a Scala feature called implicit conversion and
demonstrated in Listing 3. The first line in Listing 1 will
cause a load class Load to be instantiated. When line 5 is
encountered by the Scala compiler, since the Load class
does not have a connect method, the compiler will check
the global implicit conversion definition and found it in
line 1 of Listing 3. Thus, Load is first converted to a
LoadNode v; and then a new ProjNode v, is created
with the edge (v;,v,) between the LoadNode and the
ProjNode established (new ProjNode (this, fp)).

Listing 3: Implicit Conversion

1 implicit def loadToLoadNode (load: Load)

2 = new LoadNode (load)
3 class LoadNode (load: Load)

4 extends SourceNode with ITask {...}
5 trait SourceNode {

6 def connect (f_p:
7

8

= new ProjNode

ProjFunction)

(this, f_p)

VI. EXPERIMENTS

To show the expressiveness and efficiency of PIR, we ran
experiments using a public Wikipedia dataset [1] consisting
of 2866 Wikipedia articles (image + text) that spread over 10
categories. Each article comes in a pair, i.e. every image has

its corresponding text annotation. This one-to-one mapping
is necessary for CCA calculation. We ran tests on a system
with Intel Core IS CPU with 2 cores and 2 hyperthreads per
core so that we expect maximal parallel performance using
a thread pool of 4 threads. In [2], MIR tasks that involve
the combination of two or more different modality data are
summarized in three categories, early, late, and transmedia
fusion. Our experiments cover two topics — early and trans-
media fusion. We skip the late fusion experiment as this is
similar to transmedia fusion from execution perspective.

A. Image query with Lucene Index

The first experiment we performed is image query against
index (see Listing 1). In this experiment, we used all the
2866 images for execution. The CEDD and FTCH features
were extracted from these images. The features were then
fed into Lucene engine to generate index. Finally, a query
image was supplied to query against the index to retrieve
similar images. We showed results using the sequential vs.
parallel strategy in Table I.

image query (unit:sec) transmedia (unit:sec)

run | Sequential | Parallel run | Sequential | Parallel
1 482 304 1 240 186
2 476 303 2 232 186
3 478 303 3 233 178
4 475 299 4 233 182
5 479 305 5 234 172

Table I: Runtime of image query and transmedia query

B. Transmedia query with CCA model

In this experiment we performed a transmedia query
multimedia information retrieval task (see Listing 2 that is
illustrated in Figure 2). We used 1433 (half of the entire
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LDA LDA CCA
v
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uarylimagaie P = Projactor

{'.‘ue# Result

Figure 2: Transmedia Query Graph

dataset) image and text files respectively from all the 10
categories. SIFT features were extracted from the image
files. Then a clustering step was applied to all the SIFT
features to obtain histogram features (or bag of visual words
in some literature). The LDA process was applied to the text
files to obtain a LDA model. This model was then applied
to all the text files to obtain a probability distribution across
the 10 categories for each image. Both the histogram and



distribution data from image and text were used for the CCA
computation and ended up in a CCA model. Finally, a query
image against the CCA model will result in a list of similar
text files (with descending similarity scores) while a query
text against the same CCA model will result in a list of
similar image files. This is also why this is called transmedia
query in the literature. The results are summarized in Table 1.
Our results show that our parallel strategy outperforms the
sequential counterpart consistently across multiple execu-
tions. Note for both of the experiments we only parallelized
portion of the pipeline when we applied the parallel strategy.
Namely, only source loaders (Image and Text), the projectors
(CEDD, FTCH, SIFT and LDA) were parallelized. The
training processes and index were still sequentially executed.
We argue we will see further performance gain if we apply
parallel algorithms for training and indexing in the future.

VII. RELATED WORK

The benefits of DSL are summarized in [3], which also
described some common DSL design patterns. A DSL
is a special purpose language and thus needs to be de-
signed/tailored for the relevant domain(s). Special domain
knowledge/characteristics must be reflected in the DSL and
in turn special operations can be adopted. PIR can be
associated with several patterns mentioned in [3]. Since PIR
is embedded in the host language Scala, it falls under the
“piggyback” pattern and naturally inherits all the merits from
Scala “for free”.

OptiML [4] is designed to provide a parallel DSL for
the machine learning (ML) community to bridge the gap
between ML algorithms and heterogeneous hardware. Built
on top of Delite [5], OptiML performs static domain-specific
optimization based on the ML algorithm features such as
iterativeness and probabilistic reasoning. Instead of looking
for deep optimization of vector/matrix computation that ML
algorithms often desire, our pipeline DSL tries to help user
concentrate on building the main pipeline structure of the
whole algorithm, which forms the backbone of most of the
MIR tasks.

Diderot [6] DSL is deigned for image analysis and visu-
alization domain and supports a high-level model of compu-
tation that is based on continuous tensor fields. Diderot ab-
stracted out the mathematical details from image processing
domain and make that optimizable and parallelizable. Our
DSL emphasis on capturing the control flow (the pipeline) in
a typical multimedia information retrieval task. Thus, it is a
lot easier to locate the critical path, get better parallelization
and optimization scheme with pipeline DSL program than
with Diderot.

[7] presents a logic-based scripting pipeline language,
BANpipe, to model compositions of time consuming anal-
ysis. BANpipe creates a pipeline to represent the relayed
processing of computation in the biological sequence analy-
sis domain. While BANpipe shares the pipeline concept with

PIR, PIR is different from BANpipe in various ways. First,
BANpipe works with Prolog for the biological sequence
processing while PIR works with Scala in the multimedia
information retrieval domain. Second, BANpipe implemen-
tation applies a list of chaining processors on files and
thus essentially works like a piped batch job processor. In
comparison, our DSL implementation follows two steps,
translating code into a pipeline graph and implements the
graph with different strategies. With such high level pipeline
graph abstraction, different optimization, scheduling, and
analyzing can be performed on the graph level independent
of the detailed operations and/or computation within each
node.

VIII. CONCLUSION

In this paper, we presented a domain specific language,
PIR, for implementing MIR applications. PIR provides a
high level structure for constructing MIR workflow and hides
the details of resource management, optimization, and paral-
lelization. Programs written in our DSL are easy to read and
reusable. It is also extensible since PIR is based on a Java
compatible host language Scala that allows us to incorporate
algorithms implemented in Java-based MIR libraries. As
future work, we plan to investigate the applicability of our
DSL to a wider range of MIR applications.
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