REBLS 2015

Inferring Types for Asynchronous Arrows in JavaScript

Eric Fritz

Tian Zhao

University of Wisconsin-Milwaukee
{fritz,tzhao}@uwm.edu

Abstract

Asynchronous programming with callbacks in JavaScript leads to
code that is difficult to understand and maintain. Arrows, a gen-
eralization of monads, are an elegant solution to asynchronous
program composition. Unfortunately, improper arrow composition
can cause mysterious failures with subtle sources. We present an
arrows-based DSL in JavaScript which encodes semantics similar
to ES6 Promises and an optional type-checker that reports errors at
arrow composition time.

Categories and Subject Descriptors D.2.2 [Software Engineer-
ing]: Design Tools and Techniques—Software libraries; D.2.5
[Software Engineering]: Testing and Debugging—Error handling
and recovery

Keywords Type Systems, Type Inference, Arrows, JavaScript,
Asynchronous Programming, Concurrent Programming

1. Introduction

Event programming is prevalent in JavaScript. As the lingua franca
of the web, it is responsible for driving a huge amount of user-
interactive web applications. Because JavaScript is commonly ex-
ecuted in a single thread, blocking or long-running computations
can often cause the page or entire browser to appear unresponsive.
As aresult, JavaScript programs are written in an event-driven style
where programs register callback functions with the event loop. A
callback function is dispatched by the event loop when an external
event occurs, and control returns to the event loop once a callback
function completes execution.

Heavy use of callbacks make control flow difficult to trace.
Application logic becomes intimately mixed with sequencing logic.
A single unit of application code may no longer be confined to one
easily-readable function, but split arbitrarily far across a number
of functions. This greatly decreases code understandability and
maintainability.

The introduction of Promises in ES6 demonstrates a desire to re-
duce the complexity of callback-driven programs. Promises allow
callbacks to be chained instead of nested, regaining some impera-
tive flow of control. Similarly, Arrowlets [6] has demonstrated an
elegant solution to composing callback functions by wrapping them
in opaque units of execution using continuation functions. These

[Copyright notice will appear here once ’preprint’ option is removed.]

REBLS 2015: Pittsburgh PA, October 27, 2015

units of execution encode arrows [5], which is a generalization of
monads [11].

However, JavaScript lacks properties that make function, arrow,
or promise composition palatable. Illegal compositions are not for-
bidden at composition time and often crash or lead to subtle be-
havioral issues at runtime. Frustratingly, the source location which
displays incorrect behavior is often completely independent of the
source location of the actual error, making the associated stack trace
less than helpful. These errors force the developer to trace the ar-
row execution path backwards from the source of a runtime error,
continuation-function by continuation-function, until the erroneous
composition presents itself. Despite the benefits, this seems to leave
the developer no better off than using callbacks during debugging.

Fortunately, there is a clear separation between the composition
time and the execution time of arrows. It is possible to detect errors
after the arrows have been composed but before their actual execu-
tion starts. To this end, we have developed an optional type-checker
which infers and attaches a type to every arrow at composition time
describing its input and output constraints and forbids the compo-
sition of two arrows that are not type-composable. This reduces a
rather large class of errors during composition related to input/out-
put clashes and requires only that the user adds an annotation to
functions which are lifted into arrows.

This type-checker runs in pure JavaScript at program runtime
and thus requires no pre-processing step. While the type-checker
does not find errors prior to runtime, it does find errors prior to
arrow execution-time. This technique effectively moves the source
of errors from the point where an error may be observed to the
point where an erroneous composition occurs. We have found this
relocation of error messages invaluable and feel that moving errors
earlier in runtime (without moving them completely outside of
runtime) still provides a great benefit. The type-checker may be
disabled, returning the program to the original runtime semantics
without dynamic type-checks.

Our Contributions The main contributions of this paper are

1. an encoding of arrows which handles asynchronous errors in a
manner similar to ES6 Promises, and

2. and an optional type system to aid developers with type-directed
composition of asynchronous arrows.

The remainder of this paper is organized as follows. Section [2]
provides a motivating example. Section [3] introduces the arrow
constructors and combinators in our library and discusses their
runtime semantics and encoding. Section [provides details of
the type inference system and presents typing rules. Section [
discusses the runtime cost and the development overhead of our
library. Section [6] presents related work and Section [7] concludes.
Our arrows library, the type-checker, and some sample applications
are freely available[ﬂ

Thttps://pantherﬁle.uwm.edu/fritz/www/anrows

2015/10/5

https://pantherfile.uwm.edu/fritz/www/arrows

const makeConf = (resource, id) => {
“url" "/api/v1/" + resource + "/" + id,
"dataType": "json"
};
var ajaxA = new AjaxArrow(id => {
/* @conf Number
@resp :: {a: Number} =*/
return makeConf ("a", id);
b
> var ajaxB = new AjaxArrow(id => {
/* Qconf Number
@resp :: {b: Number} x*/
return makeConf ("b", id);
1
var ajaxC = new AjaxArrow(id => {
/* Qconf Number
@resp :: {c: Numberl} x*/
return makeConf ("c", id);
35

function log() {
console.log(arguments);
}
const getId () => /* @arrow T ~> Number */ 3;
const onErr ex => {
/* Qarrow AjaxError ~> () */
console.log("Remote server problem.");

}

const getA = o => /* Qarrow :: {a: ‘x} ~> ‘x */ o.a;
const getB = o => /% Qarrow :: {b: ‘x} ~> ‘x */ o.b;
const getC = o => /% Qarrow :: {c: ‘x} ~> ‘x */ o.c;

Arrow.catch(
Arrow.seq(
Arrow.lift (getId),
ajaxA, Arrow.lift(getd),
ajaxB, Arrow.lift(getB),
ajaxC, Arrow.lift(getC),
Arrow.lift (log)),
Arrow.lift (onErr)
) .run ()

Figure 1. Arrow example

2. Example

To illustrate the utility of our type inference tool, consider the
example in Figure [T} Three Ajax calls are made to retrieve data
from a remote sever, and the resource path of each call depends
on a result from the previous call. The final result is printed to the
console, and any errors are caught and logged.

The details of the arrow methods are explained in Section [3]
For now, it is sufficient to understand that 1ift converts a function
into an arrow, seq chains two or more arrows in sequence, catch
executes the first arrow and uses the second as an exception han-
dler, and an arrow does not begin execution until its run method
is called. Functions which are liffed into arrows are generally an-
notated with a type. If a function does not have an annotation we
assume that the function can accept anything and may return any-
thing.

Without type-checking, a number of runtime errors could occur
from this example. Composition of arrows could be misaligned
such that the output of one arrow does not conform the input of
another. There are at least seven points of potential failures in this
small example. As remote requests take a long time to complete,
runtime debugging for these kinds of programs may be particularly
frustrating.

Using our type inference tool, developers can add type annota-
tions for functions which are transformed into arrows. This enables

REBLS 2015: Pittsburgh PA, October 27, 2015

typing errors to be discovered as early as possible. In particular,
illegal composition of arrows would be discovered at composition
time before any Ajax request is attempted. For example, getA ex-
pects its input to have a record type {a : 'z}, where 'z is a type
variable. We ensure that the result type {a : Number} of the pre-
ceding arrow ajaxA can be unified with this type.

The result of ajaxA is type-checked at arrow execution time
to ensure that the result matches the annotated type. Even though
this dynamic type-check takes place after composition time, it still
moves a possible error from the point where an unexpected value
is read to the point where it is created. Such runtime checks can be
disabled after testing.

3. Arrows

An arrow is a composable, opaque unit of execution which, in this
context, generally runs in an asynchronous manner. An arrow may
receive a number of arguments, but may only receive them from
another arrow. Similarly, an arrow may produce a value, but that
value may only be consumed by another arrow.

We embed a typed domain-specific language based on arrow
operations into JavaScript. The host language may 1ift a function
into an arrow, run an arrow, or cancel a running arrow. Arrows
are meant to replace operations in JavaScript which were primarily
asynchronous or callback-driven. As a result, values cannot flow
from arrows back into the host language.

Definition 3.1 (Async Point). The point in the execution of an ar-
row which requires an external event to continue is called an async
point. These events include timers (e.g. setTimeout), user events
(e.g. click, keydown), network event (e.g. Ajax calls), and certain
arrow-specific actions (discussed in Section [3.2). Concurrent exe-
cution of other arrows or host-language code may occur within a
blocked arrow’s async point.

Definition 3.2 (Asynchronicity). We say an arrow is asynchronous
if its execution contains at least one async point. A running arrow
may be canceled only if it is asynchronous, and it may be canceled
only at an async point. Canceling an arrow effectively unregisters
all of its active event handlers so that it is never notified to resume
execution when an external event occurs.

Definition 3.3 (Progress Event). An arrow may emit a progress
event if it successfully resumes execution after blocking at an async
point. These events may be explicitly suppressed (discussed in

Section[3.2)).

An overview of the primitives of our library follows. The ar-
row primitives consist of constructors and combinators. Arrow
constructors create simple arrows from composition-time values.
These arrows can transform data synchronously and handle asyn-
chronous events. Arrow combinators compose a set of arrows to
form workflow that can be linear, parallel, or repeating. The de-
sign and implementation of the library is heavily inspired by both
Arrowlets [6] and ES6 Promises. We have, however, made a few
major interface changes which are discussed in Section [f]

3.1 Constructors

We provide seven arrow constructors, detailed below.

Ajax The ajax arrow, denoted ajax(c), produces a value by is-
suing a remote HTTP request. The request parameters (e.g. url,
method, headers, request body) are returned by the host-language
configuration function c. If type-checking is enabled, it is expected
that c is annotated with the input constraints of ¢ and the expected
result from the remote server. Dynamic type-checks are inserted
following a successful response from the remote server to ensure
the shape of the data matches the annotated type.

2015/10/5

var state = Arrow.ajax(zip => {

/* @conf Number
Q@resp { city: String, state: String } */
return {
url : "/api/v2/zip_codes/US/" + zip,
dataType: "json"
)8

Delay The delay arrow, denoted delay(duration), passes along
its own input, unmodified, after delay milliseconds pass. This arrow
is asynchronous.

Elem The element arrow, denoted elem(selector), produces a
jQuery object (or possibly empty set of objects) matching the given
selector.

Event The event arrow, denoted event (name), takes an element
as input and produces a name-event value once that event occurs
on the given element. This arrow is asynchronous.

Lift A lifted arrow, denoted 1ift(f), produces a value deter-
mined by f(x), where z is the input of the arrow and f is a host-
language function. If type-checking is enabled, it is expected that
f is annotated with the input and output constraints of f. Dynamic
type-checks are inserted following the invocation of f to ensure the
return value matches the annotated type.

var strmul = Arrow.lift((s, n) => {
/* Qarrow (String, Number) ~> Number x*/
var acc = "";
for (var i = 0; i < n; i++) acc += s;
return acc;

)8

Nth The nth arrow, denoted nth(n), takes a tuple of ar least n
elements as input and extracts its nth element.

Split The split arrow, denoted split(n), takes a single value v as
input and converts it to an n-tuple, where each element of the tuple
is v. This arrow attempts to preclude aliasing by creating n clones
of the value v. This avoids problems with mutable references to
values held my mutable arrows.

«@ O —
a B ———
«@
« Y ———

Figure 2. Dataflow diagrams for split and nth arrows.

Note that the elem constructor can be encoded by 1ift, but
is provided for convenience. The split and nth constructors can
also be encoded by 1ift, but their types depend on a compile-time
value and cannot be annotated statically with an accurate type.

3.2 Combinators

We provide six arrow combinators, detailed below. The repeat and
noemit combinators transform a single arrow, where the remaining
five combinators can transform a set of n > 1 arrows. Async points
are represented in dataflow diagrams as double-slashed lines.

Seq The sequence combinator, denoted seq(ai,...,ans), com-
poses n arrows which execute in order. The result of arrow a; is
fed into arrow a;+1. The input to a; is the input of the combinator,
and the result of the combinator is the result of a,,.

This combinator is asynchronous if any arrow a; is asyn-
chronous. The set of async points of the combinator is the union of
the async points of each arrow a;.

REBLS 2015: Pittsburgh PA, October 27, 2015

T1 —— Q1 > A2 > ... an > T

Figure 3. Dataflow diagram for the seq combinator.

This combinator generalizes the binary combinator
(a>>b):(A~B) = (B~C)— (A~ C)
in the arrow calculus [5].

Try The try combinator, denoted try(a, as, ay), attempts to ex-
ecute a with the input of the combinator. If no error occurs during
the execution of a, its output is fed into the success arrow, as. Oth-
erwise, the error value is fed into the failure arrow, ay. The result
of the combinator is either the result of arrow a or arrow a ¢, de-
pending on which one executed at runtime.

— Qs
- > af

Figure 4. Dataflow diagram for the try combinator.

T1 ———> a

This combinator is definitely asynchronous if all control flow
paths through the arrow contain an async point. This is guaranteed
only when both arrow as and arrow a are asynchronous, as arrow
a may halt with an error before its first async point.

Promise’s then and catch methods can be encoded by the
try combinator. The statement p.then(resolve) executes p and
then the callback resolve on successful execution. The statement
p.catch(reject) executes p and, if an error occurs, calls reject with
the error as input. The statement p.then(resolve, reject) executes
p and then calls either the callback resolve or reject on successful
or unsuccessful execution, respectively. The reject callback is not
executed if an error occurs in resolve.

We can encode these statements with the seq combinator, the
try combinator, and an identity arrow, id, as follows, where the
arrow a is functionally equivalent to the promise p.

p.then(s) = seq(a, 1ift(s))
p.catch(f) = try(a, id, 1ift(f))
p.then(s, f) = try(a, 1ift(s), 1ift(f))

Any The any combinator, denoted any(az, . . ., an), composes 1
asynchronous arrows such that only the arrow that first emits a
progress event, ax, runs to completion. This combinator executes
each arrow with the input of the combinator, in order, in a syn-
chronous loop. Once arrow a; reaches an async point, arrow a;4+1
immediately begins execution. Because the loop running each ar-
row is synchronous, the event which resumes the execution of any
arrow a; will not be observed until after a,, begins listening for an
event. Once some arrow a. emits a progress event, the remaining
arrows {a1,...,an} \ {a.} are canceled and the execution of a.
continues. The result of the combinator is the result of a..

Similar to the behavior of the split constructor, this arrow
attempts to preclude aliasing by creating n clones of the value v.

The purpose of this combinator is to multiplex many possible
external events. Synchronous arrows cannot make progress as their
execution does not contain an async point. Therefore, synchronous
arrows make little sense in this context and are disallowed.

This combinator is necessarily asynchronous. The first async
point of the combinator is the set of first async points of each arrow
ai, which occur immediately after arrow a,, begins to yield. Once

2015/10/5

a1

@ ax — B

Gn

T1 T4
N

az ,

T2 To
— —
g > ls
[S S
q an / \lij
c ™ Tn S
= > <

Figure 5. Dataflow diagram for the any combinator.

arrow a, resumes execution, each async point of a. is also an async
point of the combinator.

The result of this combinator differs from the result of Promise’s
race method. The former uses the value of the arrow that makes
first progress where the later uses the value of the promise which
rejects or resolves first. This behavior of the any combinator is
more useful when each arrow contains multiple async points, and
the progress of any of them is enough to choose a branch of
execution. Then, the other arrows may be canceled to improve
performance and minimize asynchronous interference.

NoEmit The no-emit combinator, denoted noemit(a), suppresses
the emission of progress events from a. This combinator creates an
additional sync point (and emits a progress event) after a finishes
execution. Although a emits no events, it can still be preempted or
canceled at its async points.

We can simulate the semantics of Promise’s race method (with
added cancellation of slow arrows) by applying the noemit combi-
nator to the arguments of the any combinator, where the arrow a;
is functionally identical to the promise p;.

,Pn) = any(noemit(pi),...,noemit(p,))

The pairing of these combinators appear much more expressive
than either the any combinator or Promise’s race method alone.
As an example, consider two arrows representing the halves of a
game, game; and game,, where each arrow is composed of a non-
trivial sequence of user interactions. A time-limit to the first portion
of the game can be encoded the following.

race(p,. ..

any(delay(limit), seq(noemit(game,), game,))

Here, the delay arrow will register a listener for a timer event
and immediately yield, where game, begins to execute. If the
timer runs out before game, finishes, then game, is canceled at
its next async point. If game, finishes before the timer runs out,
then the timer is canceled and the execution path of any continues
unobstructed towards game,.

All The all combinator, denoted all(as,...,ay), COMposes n
arrows that execute concurrently. This combinator begins executing
each arrow, in order, in a synchronous loop. Once arrow a; com-
pletes or reaches an async point, arrow a,;+1 immediately begins
execution. Once all arrows have been started, they may progress
through their execution in any order until they all complete, at
which point the combinator completes.

The input to the combinator is an n-element tuple, where the
input of each arrow a; is the ith element of the tuple. The result of
the combinator is also an n-element tuple, where the ith element of
the tuple is the result of arrow a;.

This combinator is asynchronous if any arrow a; is asyn-
chronous. The set of async points of the combinator is the union of
the async points of each arrow a;.

REBLS 2015: Pittsburgh PA, October 27, 2015

Figure 6. Dataflow diagram for the all combinator.

We can construct a combinator equivalent to the unary combi-
nator

first: (A~ B) - (AxC~ BxC)

in the arrow calculus [5] using this combinator and an identity
arrow:

firsta = all(a, id)
Repeat The repeat combinator, denoted repeat(a), executes the
arrow a at least once. The input of the combinator is fed into a.
The result of @ must be a tagged union of the form
{ "repeat": rep, "value": wval }

where rep is either true or false. When rep = true, the
combinator reinvokes itself with the value val as input. Otherwise,
the combinator halts, resulting in the value val.

T1 ——
>

T2

Figure 7. Dataflow diagram for the repeat combinator.

This combinator creates an async point following each invoca-
tion of the arrow a. This async point may progress immediately.
This async point enables preemption and cancellation between iter-
ations, and prevents synchronous arrows from looping indefinitely.

3.3 CPS Encoding

Arrows are implemented in continuation-passing style (CPS). Each
arrow has an associated call function accepting a value argument
x, a progress object p, a continuation function k, and an error
handling function h. Instead of returning a value produced by the
arrow, it is simply passed to k (on success) or h (on error). The
progress object p is used to track async points for cancellation and
emits progress events (unless suppressed) which are observed by
the any combinator.

To demonstrate the use of the progress object p, we give the
CPS encoding for the delay constructor in Figure [8| The any
combinator creates a fresh progress object for each of its children.
‘When one progress object emits a progress event, its sibling arrows
are canceled. The noemit combinator creates a fresh progress
object which does not emit events.

To demonstrate the use of the error callback h, we give the
CPS encodings for the 1ift constructor and the try combinator
in Figure[9] and Figure [0} respectively.

2015/10/5

1

call(x, p, k, h) {
const cancel = () => clearTimeout (timer);
const runner = () => {
// Emit progress event and remove canceler
p.advance (cancel);
k(x);
};

// Kick off event
var timer = setTimeout (runner, duration);
p.addCanceler (cancel);

> 3

Figure 8. Encoding for delay(duration).

call(x, p, k, h) {
try {
// Runtime type checks and parameter "spreading"
// sugar at this point, but omitted for brevity.
var y = f(x);
} catch (e) {
return h(e);

}

// Error continuation

// Success continuation

k(y);
¥

Figure 9. Encoding for 1ift(f) - dynamic type-checks omitted.

call(x, p, k, h) {
// Invoke original error callback "h" if either
// callback "as" or "af" creates an error value.
// This allows nesting of error callbacks.
a.call(x, p,
y => as.call(y, p, k, h),
z => af.call(z, p, k, h)
)
}

Figure 10. Encoding for try(a,as,ay).

4. Type Inference

In this section, we introduce the type system of our arrows library.
We define the types of values which can be consumed or produced
by arrows in Section [f.1] We define the types of arrows and give
the typing rules for arrow constructors and arrow combinators in
Section[d.2]

4.1 Value Types

Given a set of named types B which includes both JavaScript
primitives (e.g. Number, Bool, String) as well as event primitives
(e.g. Elem, Fvent), we define the type of primitive values, denoted
b, as follows.

bi=t€B | 1+ +in

A sum type consisting solely of named types is represented by
t1 + -+ + tn, where each ¢; is unique. The order of the types
in a sum type is insignificant, and any permutation represents an
equivalent type. A sum type of n = 1 elements is equivalent to its
unique type.

Given an infinite set of type variables A, we define the types of
values consumed or produced by arrows, denoted 7, as follows.

Tu=bla,BEA| T | O | (loop: 7, halt : 72)
[I7] | (Fiyeeesmn) | {la:7, o ln i o}
The top (any possible) type is represented by T. The unit type, (),
is fulfilled by by the Javascript value undefined. The loop type is
atagged union represented by (loop : 11, halt : 72) used primarily

by the repeat combinator. An arrow a produces a value vy of
type 71 when it expects to be called again with v; as an argument.

REBLS 2015: Pittsburgh PA, October 27, 2015

Otherwise, a produces a value vy of type 72, which is the final
result of the arrow. We represent this tagged union in JavaScript as
a simple object with a tag and a value field, as noted in Section@

An array type with homogeneous elements is represented by
[7], a tuple type is represented by (1, ..., ¢n), and a record type is
represented by {1 : 71,...,%4n : Tn}. The order of the labels in a
record is insignificant, and any permutation of the labels represents
an equivalent type.

4.2 Arrow Types

We define the types of arrows, denoted by 7, as follows, where C
is a set of constraints of the form 7 < 7" and F is the set of types
which may be produced in exceptional cases.

T U= Tin ~ Tout \ (C, E)

If C' and E are both empty, 75, ~ Tyt may be written for short.
If the constraint set C' is not consistent, then the type is considered
malformed and the associated composition is rejected during type-
checking. The appendix (Sections |§| and outlines an algorithm
for determining whether a constraint set is consistent. In brief, the
algorithm rejects constraint sets whose transitive closure contains
obvious subtyping violations.

The constrained arrow type is similar to the constrained type
7 \ C introduced by Eifrig et al. [1l], where the set C' contains
subtyping constraints on the type variables occurring in 7. A con-
strained type inference system generalizes unification-based infer-
ence to languages with subtyping - a feature we found is necessary
for arrow type inference.

We assume that if a constrained arrow type contains a type
variable «v in 7in , Tout, C, or E, that the type variable is understood
to be existentially quantified with respect to the arrow type, i.e.

Vo Tin ~ Tout \ (Cy E)

Typing rules for arrow constructors and combinators appear in
Figure[[T]and Figure respectively. For brevity, the typing rules
have the implicit assumption thatif a : 7 ~ 7’ \ (C, E), then C
is consistent.

When an arrow type is used as the input of a combinator, a
unique instantiation of that type is created in order to prevent
unintended clashing of type variables. A unique instantiation of a
constrained arrow type is created by substituting the set of type
variables occurring in the type as well as the constraint set and set
of error types with a set of fresh type variables.

Rule (T-LIFT) assumes that each lifted function f is annotated
with a constrained arrow type describing the input and output types
of f, and Rule (T-AJAX) assumes that each Ajax configuration
function c is annotated with two constrained types: one describing
the input to ¢, and one describing the response from the remote
server. We assume the existence of an implicit function Annot (¢, f)
which reads the annotation named ¢ of the function f and produces
a unique instantiation of the type it describes.

Rule (T-NTH) shows how the nth(n) combinator selects the
nth element from a tuple with m > n elements. The argument
to this combinator may be a wider tuple, as (71,...,7m) <
(ti,...,7y) is a consistent constraint. Note that the application
of this rule happens at arrow composition time when n is known.

5. Discussion

We have implemented several small but non-trivial programs using
the abstractions provided by our library with type-checking enabled
during development. Among these were an implementation for the
game Memory, which requires the user to select two cards from a
grid with the same face value until all pairs of cards are selected,
and an application which demonstrates Fischer-Yates Shuffle and
Bubble Sort algorithms through timed animations.

2015/10/5

T-LIFT T-AJAX
Annot(conf, ¢) =11\ (C1, E)

Annot(arrow, f) =71~ 12\ (C, E)

Annot(resp, ¢) =12 \ Ca

lift(f) :m~ =\ (C, E)
T-ELEM T-EVENT
elem(selector) : T ~» Elem

T-SpPLIT
split(n) :a~ (a,...,q)
—_————

n elements

event(name) : Elem ~ Event

ajax(c) : 11~ 72 \ (C1 U2, EU{AjaxError})

T-DELAY
delay(duration) : a~ «

T-NTH
nth(n) : (o, B,...,7) ~ 7
N———

n elements

Figure 11. Typing rules for arrow constructors.

T-REPEAT
a: T~ (loop : T2, halt : 3) \ (C, E) C'={r<mn}

repeat(a) : 11 ~ 73\ (CUC', E)

T-SEQ
Vi€ l.n.a;: 1~ 7\ (Ci, E)) C'=Uio{ri_ <7}

seq(ai,...,an) : 71 ~ T \ (C/UUCZ', UE',)

T-ALL T-ANY
Vieln.ai:m~ 7\ (Ci, E) Vi€ l.na;i:m~7\(Ci, E), Ci ={a<m, 1 <8}
all(at,...,an): (T1y...,Tn) ~ (T{,...,T,/L) \ (UC’Z-, UEZ) any(ai,...,an) : @ ~> ﬂ\(UC{ UUCZ-, UEl)
T-NoEMIT T-TRY

P~ Vi€ l.3.a;: 1~ 7\ (Ci, E))

C'={rl<m, m<B, m<BU{r<7s|7€E}

noemit(a) : 7

try(ai,az,a3) : 7~ B\ (C'U UCi, E> U E3)

Figure 12. Typing rules for arrow combinators.

During this time, we observed a large number of instances
where the type system forbid us from composing arrows illegally.
In many cases the composition was illegal in a way that was trivial
to fix yet non-obvious to discover. For example, our game Memory
used an arrow with the type selectOne :: Elem ~» T, which
was meant to be executed twice in a row with the same input.
The intuition when composing such arrows is to simply seq them
together, but this unfortunately causes a type clash between the first
and second invocations. The correct solution is to remember the
input to the first invocation, and use it as the input of the second
invocation. This became a common idiom and was encoded as a
derived combinator in our APIL.

remember(a) = seq(split(2), all(a, id), nth(2))

Annotation Burden The annotation burden required by devel-
opers seems to be minimal. Our implementation of Memory (151
lines of ES6) required only eight annotations in total, but our type-
checker inferred the type of 126 arrows at startup. This number
is not surprising if you consider many combinators (such as the
remember combinator defined above) are built from the founda-
tional combinators discussed in Section [3} Similarly, our imple-
mentation for the sorting and shuffling animation (126 lines of ES6)
required only four annotations, but types for 124 arrows were in-
ferred.

Inference Overhead We measured the runtime overhead of arrow
type inference. We used the Ajax example from Section[2]as well as
the programs described in this section. Measurements are averaged
over 1000 runs in Chrome (V8), with warmup runs discarded.

Application | # Arrows | Disabled (ms) | Enabled (ms)
Ajax 13 0.125 0.905
Shuffle 62 0.837 3.957
Shuffle & Sort 124 1.638 8.118
Memory Game 126 1.566 10.989

REBLS 2015: Pittsburgh PA, October 27, 2015

We also constructed a benchmark application which allows us
to arbitrarily adjust the size of arrow types. We used an arrow with
a type of the form

{fivait~A{fir i} \ ({ai < f})
and composed it with itself it 1000 times. This requires inferring
a large number of intermediate arrow types, each with a constraint
set size linear to the size of the its input.

We measured the runtime overhead of arrow type inference
with a variable number of fields in the arrow’s type. Based on
these results, it appears that arrow type inference is linear with the
number of arrows and subquadratic with the size of the arrow type.
We expect arrow type sizes to remain small as the user annotates
only the fields of the object which are used by the arrow, and arrows
types are aggressively simplified during inference.

Fields | 1 10 20 30 40 50
Time (ms) | 1.10 | 3.39 | 6.88 | 11.82 | 17.32 | 25.48

We measured the overhead of the runtime type-checks at the
border of lifted functions. Without runtime type-checks, the arrow
executes in an invariant 1.762ms. There are 1024 dynamic type
checks (the number of lifted arrows) performed in a single run.
Based on these results, it appears that runtime type-checks have an
overhead which grows linearly with both the number of dynamic
type checks as well as the size of the fype being traversed.

Fields | 1 10 20 30 40 50
Overhead (ms) | 0.25 | 1.24 | 2.11 | 3.07 | 4.06 | 4.81

It is important to keep in mind that application using these ab-
stractions are asynchronous and often blocked waiting for user or
remote server responses, which vastly dominate the runtime of an
application. We find this performance overhead during develop-
ment to be negligible.

2015/10/5

6. Related Work

Arrows Arrows [3]] [7] [8] were first formalized as a generaliza-
tion of monads [I1]]. An arrow of type (a b ¢) represents a compu-
tation with input of type b delivering a value of type c. Our 1ift
constructor and the combinators seq and all encompass the three
operations which define arrows.

Arrowlets Arrowlets is a JavaScript library for using arrows [6],
providing programs the means to elegantly structure event-driven
web components that are easy to understand, modify, and reuse.
The implementation of our arrows library was heavily inspired by
the continuation-passing style used by Arrowlets, as well as the
asynchronous semantics of the combinators it provides.

Regarding execution semantics only, there are two major dif-
ferences between our arrows library and Arrowlets. First, we have
generalized binary combinators to support n arrows, leading to
code which favors generalized n-tuples over simple pairs. Second,
we have altered the encoding of arrows to carry along an error con-
tinuation in addition to the normal-path continuation. This allowed
us to add the try combinator, which subsumes the semantics of
ES6 Promises.

ES6 Promises Promises allow a sequence of callbacks to be
chained together, flattening the dreaded ‘pyramid of doom’ into
a sequence of Promise then calls. Promises also provide a means
of error handling, where the then method accepts an optional error
callback.

Our arrows library also encode the core mechanism of Promises,
but there are some obvious differences in execution semantics.
For one, when a Promise object is created it attempts to resolve
immediately. If a Promise object is composed with a callback after
its resolution, it simply forwards the memoized result. Arrows
separate composition and execution behind an explicit run method.
This allows an arrow to be called multiple times, like a regular
function, and enables features such as the repeat combinator.
Promises place emphasis on the values which they proxy, where
arrows place emphasis on the computation. It would be trivial to
adapt our arrows library to support the lazy nature of Promises with
the addition of a memoizing combinator.

Promises also implement two methods which are strongly
related to the arrow combinators presented here. The method
Promise.all(ps), similar to the all combinator, takes an iter-
able of promises, ps, and resolves once each promise resolves or
rejects if any promise rejects. Its resolved value is an array of the
resolved values of each promise. The method Promise.race(ps),
similar to the any combinator when the arrow inputs are wrapped
in noemit, takes an iterable of promises, ps, and resolves once any
promise p resolves or rejects once any promise p rejects. The value
of the promise is the value of the first resolved arrow. Unlike the
any combinator, Promise.race does not abort the execution of
the remaining arrows. We believe the semantics of the any combi-
nator to be more useful in practice.

Coincidently, because we can simulate Promises semantics so
closely with arrows, our typing judgments can also apply almost
directly to a Promises library. However, type-checking with Arrows
is much more elegant than with Promises because the composition
time and execution time of arrows has a clear delineation, where
Promises may begin immediately following their creation.

Promise and Arrowlets attack the problem of callback compo-
sition in similar ways, but provide a disjoint set of orthogonal fea-
tures. Arrowlets provide a means to abort an asynchronous opera-
tion, where Promises follow a fire-and-forget convention. Promises
provide a means of catching an error, where Arrowlets focus only
on happy-path composition. Our implementation of arrows chooses
to support both sets of features.

REBLS 2015: Pittsburgh PA, October 27, 2015

Factors Factors [10] are another interactivity abstraction. A fac-
tor represents a state of a program which can be queried either
synchronously or asynchronously. A synchronous query takes a
prompt value and blocks until a response value is produced. An
asynchronous query takes a prompt value and returns immediately,
but produces a future factor which serves as a handle of the com-
putation. Because queries return a continuation factor, state is ex-
plicitly tracked. Factors require an affine type system to ensure that
future factors are not used more than once.

7. Conclusion

We have presented an arrows library which encodes sematics sim-
ilar to ES6 Promises and a composition-time type-checker which
enables type-directed development. We believe this tool greatly re-
duces the friction of development using a functional style in a lan-
guage with no compile-time checks.

Future Work We intend to explore additional methods of static
analysis to provide greater confidence in correct arrow composi-
tions. We are currently exploring typestate analysis with relation
to the semantics of concurrently executing arrows with interesting
results.

Acknowledgments
We thank John Boyland for his comments on the draft.

References

[1] J. Eifrig, S. Smith, and V. Trifonov. Type inference for recursively
constrained types and its application to oop. Electronic Notes in
Theoretical Computer Science, 1:132-153, 1995.

[2] E. Fritz and T. Zhao. Inferring types for asynchronous arrows in
javascript. Technical report, University of Wisconsin - Milwaukee,
2015.

[3] A. Guha, C. Saftoiu, and S. Krishnamurthi. The essence of javascript.
In ECOOP 2010-Object-Oriented Programming, pages 126—150.
Springer, 2010.

[4] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson. Arrows, robots,
and functional reactive programming. In Advanced Functional Pro-
gramming, pages 159—187. Springer, 2003.

[5] J. Hughes. Generalising monads to arrows. Science of Computer
Programming, 37:67-111, 1998.

[6] Y. P. Khoo, M. Hicks, J. S. Foster, and V. Sazawal. Directing javascript
with arrows. In Proceedings of the 5th Symposium on Dynamic
Languages, DLS ’09, pages 49-58, New York, NY, USA, 2009. ACM.
ISBN 978-1-60558-769-1.

[7]1 S. Lindley, P. Wadler, and J. Yallop. The arrow calculus. Journal of
Functional Programming, 20(01):51-69, 2010.

[8] S. Lindley, P. Wadler, and J. Yallop. Idioms are oblivious, arrows are
meticulous, monads are promiscuous. Electronic Notes in Theoretical
Computer Science, 229(5):97-117, 2011.

[9] S. Maffeis, J. C. Mitchell, and A. Taly. An operational semantics for
javascript. In Programming languages and systems, pages 307-325.
Springer, 2008.

[10] S. K. Muller, W. A. Duff, and U. A. Acar. Practical abstractions
for concurrent interactive programming. Technical report, Carnegie
Mellon University, 2015.

[11] P. Wadler. The essence of functional programming. In Proceedings
of the 19th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pages 1-14. ACM, 1992.

[12] Z. Wan and P. Hudak. Functional reactive programming from first
principles. In ACM SIGPLAN Notices, volume 35, pages 242-252.
ACM, 2000.

2015/10/5

CLS-TRANS CLs-Loop CLS-ARRAY
nn<melC n<13eC (loop : 71, halt : T2) < (loop : 71, halt : 73) € C [f]<[r]eC
n<t3eC {n<n,n<n}cC r<tecC
CLS-TUPLE CLS-RECORD
/ / ! /
(t1y.eeymn) < (14,...,7) €C i, b} <{lr:m,... b1} €C
{ni<rlieln}CC {r<7|ielk}CC
Figure 13. Constraint set closure rules.
CNS-VAR CNS-SUM
Cns-Top TeAVT €A {til]i€l.k}y C{]i€l.n} CNs-ARRAY
T<T r<r bt St [r] < [7]
CNS-TUPLE CNS-RECORD
Cns-Loop k>n (0 liel.ny C{t|icl.k}
(loop : 1, halt : T2) < (loop : 71, halt : T5) (11,) S (11yeeym) {lrim, . by < {0 T}

Figure 14. Constraint set consistency rules.

A. Consistency

In this section we present the definition of constraint set consis-
tency. If an arrow has the type 7 ~ 7'\ (C, E) and C is incon-
sistent, then there is either some type variable o which has a set
of unsatisfiable bounds, or there is a type clash between the output
and input of two child arrows.

Definition A.1 (Closed). A set of constraints C' is closed if it
satisfies the closure rules given in Figure[I3] We refer to the closure
of C as closure(C).

Definition A.2 (Consistent). A constraint set C' is consistent if
every constraint in closure(C') is consistent. A consistent constraint
must match one of the forms given in Figure[T4]

Rule (CLs-TRANS) ensures that subtype constraints are tran-
sitive. For example, C = {String < a,a < Number} con-
tains only consistent constraints. However, due to the unsatisfiable
bounds of «, String < Number € closure(C') and the constraint
set is considered inconsistent.

The remaining closure and consistency rules describe a simple
subtyping join-semilattice. The top type occupies the top of the
lattice, by Rule (CNS-TOP); there is no bottom type (and hence
no greatest lower bound for some sets of types). This allows an
arrow consuming any type to be composed with any arrow, which
is a useful property when sequencing.

Named types are neither subtypes nor supertypes of another
named type. Named types are subtypes of any sum type which
contains them, and sum types are subtypes of their own supersets,
by Rule (CNS-SUM). This allows an arrow producing a set of types
T and an arrow consuming a set of types T to be composed when
TCT.

Rules (CNS-LoOOP), (CNS-ARRAY), (CNS-TUPLE), and (CNS-
RECORD) ensure that composite datatypes are consistent only with
composite datatypes with the same outermost type constructor. Tu-
ple and record width subtyping is enabled by Rules (CNS-TUPLE)
and (CNS-RECORD). Array, tuple, and record depth subtyping is
enabled by Rules (CLS-LooP), (CLS-ARRAY), (CLS-TUPLE), and
(CLS-RECORD).

Type variables are never immediately inconsistent with another
type, by Rule (CNS-VAR). This makes it possible to have a set of

REBLS 2015: Pittsburgh PA, October 27, 2015

constraints describing an impossible lower bound for some type
variable « (e.g. C = {a < String,a < Number}, where no
lower bound of both String and Number exists). This case is
handled by type simplification, discussed in Section B}

B. Type Simplification

In this section we present a type simplification technique for arrow
types. Our goal is to remove as many unnecessary constraints from
the constraint set of an arrow type as possible. This keeps the size
of arrow types small, decreasing memory overhead and runtime
overhead. Without simplification, arrow types are noticeably larger
and type inference is noticeably slower as closure calculation and
consistency checks are at least linear with the size of the arrow type.

As a motivating example, consider the following composition
involving an arrow a of type Fvent ~» T.

remember(seq(event(click), a))

The resulting arrow takes as input an Elem value, waits until a click
events occurs on that value, invokes the arrow a with the resulting
event, and then yields the original Elem value. This is useful as it
allows multiple events to be sequenced on the same event.

Without type simplification, the type of the resulting arrow is
given by the following.

a~ 0\ ({ Event < Event, (a, o) < (Elem, j),
(T, B) < (7,), @ < Elem, a < B, T <7,
B<é a<d},0)

The first constraint, Fvent < FEwvent, is introduced by the
inner seq. The next two constraints (o, «) < (FElem, () and
(T, B) < (v, d), are introduced by the remember combinator,
which involves a seq with an split and nth arrow. The remaining
constraints are introduced by closure rules described in Section [A]

After type simplification we are given the following, which is
much smaller and more easily understandable.

a~86\({a<é a< Elem}, 0)

The Memory application mentioned in Section [5] creates an ar-
row with 1414 distinct constraints involving 56 type variables with
type simplification disabled, and no constraints after minimization.

2015/10/5

ULs-Topr ULS-SELF
T<T T<T

ULS-NONVAR
TZANT €A

ULS-LOWERUNKNOWN
a & Tin N & Tout

ULS-UPPER
at <7

ULS-LOWER
T<a

ULS-UPPERUNKNOWN
aE Tin N & Tout

/
T<T

a<p

B <

Figure 15. Useless constraint elimination rules.

Definition B.1 (Simplified). An arrow type is simplified if it is
bound-minimal (Definition[B.2)), variable-minimal (Definition[B.4),
and pruned (Definition [B.3).

Definition B.2 (Bound Minimal). An arrow type Tin ~> Tout \ (C)
is bound-minimal if every type variable « in the arrow type has at
most one concrete upper bound and at most one concrete lower
bound. A type is concrete if it contains no type variables. We can
bound-minimize an arrow type by collapsing the concrete bounds
of a type variable.

We can collect the concrete lower and upper bounds of a type
variable «, denoted b (o) and by (), respectively.

by (a) = {m | : < a € C and 7; contains no type variables}
by(a) = {m | @ < 7 € C and 7; contains no type variables}

We can then bound-minimize a constraint set C' by collapsing
the lower and upper bounds for each type variable a. We can
collapse the lower bounds of a type variable o by applying the
following transformation to C.

(C\{r <almeb()})U{(Vbi(a)) <a}

Similarly, we can collapse the upper bounds of a type variable o by
applying the following transformation to C'.

(C\{a <7 |7i€br(a)})Ufa < (Abr(a))}

(V T) and (A T) denote the least upper bound and greatest
lower bound of the set of types T, respectively. An upper bound
necessarily exists between any two concrete types due to the pres-
ence T, but a lower bound may not exist due to the absence of a
bottom type.

If a non-existent lower bound is needed to simplify an arrow
type, then there is a type variable o for which no concrete type
satisfying the set of constraints exists. We consider such arrow
types malformed. For example, an arrow of the following type
accepts an (impossible) value whose type must be simultaneously
a lower bound of Int and a lower bound of String.

a~> Number \ ({a < Int,a < String}, 0)

Such an arrow type, while consistent, results in a composition error
as it cannot be supplied any reasonable value at runtime.

Definition B.3 (Type Variable Position). A type variable oo may oc-
cur in negative position, denoted o, in positive position, denoted
o, in both positions simultaneously, denoted o™, or in neither po-
sition, denoted «, relative to an arrow type Tin ~> Tout \ (C, E).

Given a constraint 7 < 7’ and a type variable o occurring in T
and a type variable 3 occurring in 7/, we say that o lower-bounds
[and B upper-bounds o.

A type variable o occurs in negative position if either o occurs
in T4, or if & upper-bounds some type variable 3~ or 8T. Sym-
metrically, a type variable « occurs in positive position if o occurs
in 7oyt or if o lower-bounds some type variable ﬂ+ or ,Bi.

Definition B.4 (Variable-Minimal). We can variable-minimize an
arrow type Tin ~ Tout \ (C, E) by constructing a substitution
o = [7:/a;] by the rules below and replacing all occurrences of

REBLS 2015: Pittsburgh PA, October 27, 2015

the tyep variable «; by the type 7; in Tip, Tout, C, and E. An arrow
type is variable-minimal if no such substitution can be created.

We add the mapping [7/a] to the substitution o if one of the
following rules hold.

-{r<a,a<7}CC
—a <7eCandV(r' #71), a<7 ¢C
—7<ateCandV¥(r' #7), 7 <agC

If [3/a] is being added to a substitution o which already con-
tains the mapping [7/«], then we instead add the mapping [7/] to
avoid re-introducing a type variable being substituted.

We substitue a type variable o with the type 7 if 7 is both an
upper and lower bound of a, as & = 7 is a necessary condition for
a solution to the constraint set.

We substitute type variable in negative position with their sole
upper bound, and type variables in positive position with their sole
lower bound. Negative position variables represent a constraint on
the input of an arrow, as positive position variables represent a
constraint on the output of an arrow. Therefore, negative position
variables are concerned only with an upper bound, and positive
position variables are concerned only with a lower bound.

Applying a substitution may alter the closure or consistency
properties of a set of constraints and may require the closure set
to be recalculated and the consistency rechecked.

Definition B.5 (Pruned). An arrow type Tin ~ Tout \ (C, E)
is pruned if every constraint ¢ € C' is not immediately useless.
Constraints matching a form in Figure [I5] are considered useless.
A constraint set can be pruned by repeatedly removing all useless
constraints.

C. Semantics

In this section, we explain the semantics of arrow constructors
and combinators. Section [C.I] and Section [C.2] defines the syntax
of abstract arrows and a translation from concrete arrows to the
abstract arrows. Section |C.3| defines an operational semantics for
abstract arrows. Section [C.4] sketches a proof that the arrow type
system presented in Sectiond]is sound.

C.1 Syntax

Figure [T6] defines the complete abstract syntax. We translate con-
crete arrows, denoted a, to abstract arrows, denoted e, of the form

Ax. Ap. A\k. Ah. e

where z is replaced by the input value of the arrow, p is replaced by
a list of progress objects (or progress list), denoted e, k is replaced
by a continuation function, and h is replaced by an exception
handler function.

Progress objects, denoted P;, always come in pairs, denoted P;*
and P?, which are used to tag the branches of the any combinator.
A progress list, denoted ey, represents the path to a node in a binary
tree, where e, is the parent of P} :: e,. Each arrow carries a
progress list throughout its execution. The expression advance e,
cancels the execution of the arrows carrying progress lists that are

2015/10/5

e = x v, N value & constant
| function value Ve = timeE_lvent(n) | ajaxEvent(c) event value
| ealeclerlep|elen vp u= €| P progress value

€1 €2 function call
e1; eo sequence €a = Az. Ap. Ak. M\h. e abstract arrow
(e,€') | e[n] tuple & tuple projection €e := timeEvent(e) | ajaxEvent(e) event expression
| casee; of loop(z1) = €1 ek = kl|Ay.e continuation
| halt(zo) = e2 en = hlXy.e exception handler
| fix(Az.a) ep = p| P uplup progress expression
e1 o (e2, ep, ek, €p) arrow application e := x| loop(e) | halt(e) loop expression
advance ep A event context
>\ .)\ . / o= €
async ec ey (Ay- €) (A= €') | Ayve = (vp, Ay. e, Az.€’)
Figure 16. Abstract syntax.
[Lift(f)] = Az Ap. M. Mk (f 2)
[ajax(c)] = Az. Ap. Ak. Ah. async ajaxEvent(c z) p (\y. advance p; (ky)) (Az. h(2))
[delay(duration)] = Axz. Ap. Ak. Ah. async timeEvent(duration) p (A-. advance p; (kx)) (A-. ())
[repeat(a)] = fix(Ar.
Az. Ap. Ak. Ah. [a] o (z, p, Ay.
advance p;
case y of loop(z) = async timeEvent(0) p (A_.7 e (2, p, k, h)) h)
| halt(z) = (k z), h)
[seq(ar,a2)] = Az Ap. Ak. Ak [a1] e (z, p, Ay. [a2] @ (y, p, k, h), h)
[all(a1,a2)] = Az. Ap. Ak. Ah. [a1] e (z[0], p, Ay. [a2] e (z[1], p, Az. (k (y, 2)), h), h)
[any(ai,a2)] = Az Ap. Ak. Ah. ([a1] o (=, P} = p, k, h)); ([az] o (z, P? ::p, k, h)) P, P? are fresh
[try(a,as,ap)] = Az Ap. Ak. Ah. [a] e (z, p, Ay. [as] e (y, p, k, h), Xz. [as] e (2, p, k, h))
[aras(O] = [a] » (O, & A O, A O)
Figure 17. Arrow translation rules.
E-AsSYNC E-ADVANCE-EMPTY
A, async ve vp (Ay. €) (Az.€') = AU {ve = (vp, Ay. e, Az.€)}, O A,advance e — A, ()
E-EVENT-Succ E-EVENT-FAIL E-ADVANCE
ve — (vp, Ay. €,) €A ve 5 (Up, o Az.€/) €A
Resp(ve) = Suce(v) Resp(ve) = Fail(v) A = {ve (v;, LO)EA] Pf ¢ v;, k#j}
DFv:m 0 F ve : (succ: 71, fail :) DFv:To O F ve : (succ: -, fail : T2) v ;
: - A, advance (P} :: vp) — A’, advance v,
A, O = A\ {ve = (vp, Ay €,)}, [v/yle A, O = A\ {ve = (vp, -, Az. €')}, [v/z]e
E-HosT-ApPP E-ARROW-APP
f vl v annotgrrow (f) =T1 — T2 \ C
PFv:m \Ch Do 172\ Co C1(C2) CCc1(CUCy) ea = AT. Ap. Ak. Ah. eq
A fo— A Aseq o (v, vp, Ay.e, Az.€) = A, [v/z,vp/p, Ny.e/k, Az.€' /hleg
Figure 18. Operational semantics.
T-TIME T-AJAX T-SUB
I'e: Number I'ke: AjaxConf F'ke:7
T'+ timeEvent(e) : (succ: O, fail : O)) I'+ ajaxEvent(e) : (succ : annotresp(e), fail : AjaxErr) The:7\{r <71}
T-Loop T-HALT T-ADVANCE
'ke:r I'ke:7 I'kep:mp
T'F loop(e) : (loop : 7, halt : ') I+ halt(e) : (loop : 7, halt : 7') I' - advanceep : O
T-App T-ARROW
F'ke:m1 —»m\C ke :m\C Dyx:7m,p:mp, ki —= O,h:m3 = OFe: O\C
'kee :m\Cuc’ TEAe. Ap. XAk Mhee:mi =1 = (2 = O) = (13— 0) = O\C
T-ARROW-APP T-ASYNC
Theg:mmi =1 = (m—=>0)= (= 0)—= 0\C 'k ee: (Succ: 71, Fail : 12)
F'kep:mp F'ke:mi \Ch Tkep:mp Trheg:m1— O\Ch Fkep:m— O\ Co
FFCkZTQ*}()\CQ F}_eh:Tg}*)()\Cg I‘Fasync eeepekeh:()\CluCg

I'keq o (e, ep, e, ep): O\NCUCLUC2UC3

Figure 19. Typing rules for expressions in abstract syntax.

REBLS 2015: Pittsburgh PA, October 27, 2015 10 2015/10/5

in the same tree but not on the same path as e,. Note that while €
can represent the root of any tree, P :: € and Pf :: € are not in the
same tree if i #£ j.

Application of abstract arrows are represented by expres-
sion of the form e, o (e, ep, ek, en). Asynchronous ar-
rows are translated to abstract arrows with bodies of the form
async e. e, (Ay. €) (\z. €’), where e. ranges over time or Ajax
event objects. The meta-variable e; ranges over tagged unions of
loop(e) and halt(e) that are used to determine whether repeated
arrows should loop or halt.

C.2 Translation to Abstract Syntax

Figure |17] defines the translation from concrete arrows to expres-
sions in continuation passing style. For simplicity, the translation
rules for the n-ary combinators seq, product, and any are defined
as binary combinators. The extension of these translation rules to
support n. > 2 arrows is trivial (but notationally dense). We omit
the translation of elem, split, and nth arrows as they can be trans-
lated from simple lifted functions. To further reduce clutter, the se-
mantics does not include noemit combinator and event construc-
tor.

The arrow 1ift(f) is translated to an expression that applies
the continuation function k to the result produced by invoking f.
We omit the exceptions thrown by lifted functions since the main
focus is on the resolution and rejection of asynchronous events. The
ajax and delay arrows are translated to expressions that register
callback functions to AJAX and time events, respectively. The
progress list p is advanced in the callback functions of these arrows
in order to create an observable yield point (discussed further in
Section[C.3).

The combinator repeat(a) is translated to a recursive abstract
arrow which will either re-invoke the arrow with the same progress
list and continuation, or call the continuation with the result of a
(dependent on the result of a). The progress list p is advanced in
the continuation of a in order to create an observable yield point.
The translation rules for the seq and product combinators are
straightforward. The combinator any(a1, a2) is translated to two
abstract arrows [a1] and [az] with progress lists P} :: p and
P? : p, respectively. As we will show next, the two progress
lists ensure that if the execution of a; makes progress, then as is
canceled (and the opposite).

The term a.run() is translated to an expression that applies [a]
to a dummy callback function and returns unit

C.3 Operational Semantics

Figure [T8] defines the operational semantics of abstract arrows,
where the context A maps event objects to triples of progress lists,
event handlers, and exception handlers.

We distinguish between normal JavaScript function application
(E-Host-App) and arrow application (E-Arrow-App) by inserting
runtime type checks in the former to ensure that the input and
output of a call to f are consistent with the declared type of f
(which is supplied by the user). A possible runtime error is when
the result of a call to f is a value of an unexpected type, but this
can only occur if f is incorrectly annotated.

Rule (E-Async) adds a mapping from the event object v, to
a triple of a progress list, a callback handler, and an exception
handler (vp, Ay. e, Az.€’), to A. Rule (E-Event-Succ) invokes
the handler of an event object v, if it occurs with a success, where
Resp(.) is a function that returns the response to v., which is either
Suce(v) (success with result v) or Fail(v) (failure with exception
v). Rule (E-Event-Fail) invokes the exception handler of v, if it

2In practice, we return a progress object from a.run() so that the user is
able to cancel the event handlers generated by the execution of a.

REBLS 2015: Pittsburgh PA, October 27, 2015

occurs with a failure. A time event occurs once a particular number
of millisecond pass since the event was registered and an AJAX
event occurs once the corresponding AJAX request is answered.
The two event rules simulate the JavaScript event loop. Both event
rules insert runtime checks to ensure that the responses to events,
(e.g. AJAX requests), have the correct types. This type of errors
can only occur if event arrows (e.g. AJAX arrows) are incorrectly
annotated.

By Rule (E-Advance), advance(vj) recursively removes event
handlers with the progress lists that are in the same tree as v,
but not on the same path. This is used by the any combinator so
that once an arrow passes its first yield point all other pending
arrows within the combinator are canceled. Notice that each arrow
is associated with a progress list and the arrow any(a1, a2) extends
its progress list v, with a fresh progress object P/ and passes them
to a; where j € {1, 2}. If an arrow with a progress list that includes
P/ makes progress, then the arrows with progress lists that include
PF are canceled through advance(P; :: v,), where k # j.

The standard reduction rules for tuple, tuple projection, se-
quence, tail call, fix, and case expressions are omitted.

C.4 Properties

To show that the arrow type system is sound, we first establish that
the translation of concrete arrows preserves typing (Theorem [C.I).
The typing rules for arrows in abstract syntax are shown in Fig-
ure [T9] where the rules for tuple, tuple projection, sequence, fix
expression, continuation, function value, and case expressions are
omitted. Most of the rules are not surprising. The typing rules
have the implicit assumption that all type variables are fresh and
if ' e: 7\ C, then C is consistent. The proof of this theorem is
straightforward and omitted.

Theorem C.1. Ifa : 71 ~ 72 \ (C,E), then @ F [a] : 11 —
= (—=>0)=>(n—=>0)=>0\CU{r<m|7€E}
where 7, is the type of all e,,.

Next, we show that the execution of a well-typed arrow will not
get stuck in Theorem [C.2] which states if an arrow a is well-typed
and takes no input, then its execution will reduce to unit and all the
event handlers generated by a will run to completion as well. We
make the assumption that all events will occur eventually, and the
event handlers added to A are eventually invoked.

Theorem C.2. Ifa: () ~ 7\ (C, D), theneither ¢, [a.run()] —*
€, () or it gets stuck because of Rule (T-Host-App), (E-Event-
Succ), or (E-Event-Fail).

By Theorem |C.1} and because a is well-typed, it is clear that
[a.run()] is well-typed. It is straightforward to show that well-
typed expressions can make progress or get stuck because of Rule
(E-Host-App), (E-Event-Succ), or (E-Event-Fail).

To show that subject reduction preserves typing, we concentrate
on these three rules. Rule (E-Host-App) states A, f v reduces to
A, v if f v reduces to v’ and the constraint set closure of the type
of v’ is a subset of the constraint set closure of the type of f v.
Suppose ¢, [a.run()] —=* A, E[f v] and A, f v — A,v’, where
E[] is an evaluation context. If C' and C” are the constraint sets of
the types of E[f v] and E[v'], respectively, then C1(C") C C1(C).
Since E[f v] is well-typed and C' is consistent, C’ is consistent
and E[v'] is well-typed. Rule (E-Async) and (T-Async) ensure that
Yve = (vp, Ay.e, Az.e’) € A,if 0 - ve @ (succ: 71, fail : T2),
then® - Aye: 71 — QO \Crand @ F Az.e' : 2 = O\ Co,
and C; U Cs is consistent. If the reduction is by Rule (E-Event-
Succ), where A, () — A\ {ve — (vp, Ay.e,)}, [v/y]e, then
Resp(ve) = Succ(v), D= v : 71, and O + ve : (Succ: 1, Fail :
). Thus, @ F [v/yle : () \ C1 and C1 is consistent. The reduction
for Rule (E-Event-Fail) is similar.

2015/10/5

	Introduction
	Example
	Arrows
	Constructors
	Combinators
	CPS Encoding

	Type Inference
	Value Types
	Arrow Types

	Discussion
	Related Work
	Conclusion
	Consistency
	Type Simplification
	Semantics
	Syntax
	Translation to Abstract Syntax
	Operational Semantics
	Properties

