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Abstract The expressiveness of the RTSJ does have disadvan-
tages. Any given application, which uses only the sub-
The Real-time Specification for Java (RTSJ) has beenset of the RTSJ relevant for its particular real-time re-
designed to cover a large spectrum of real-time applica- quirements, will have to deal with the full range of error
tions, to achieve this goal the specification must cater to modes allowed by the RTSJ. For hard real-tinigh in-
different real-time programming styles. This generality tegrity software systems it is essential to minimize the
is essential for acceptance of Java by the industry but it likelihood of catastrophic runtime errors as these may
also means that there are many error modes that appli- lead to, e.g., loss of life. Wellings et.al. have identified a
cation developers must deal with. The memory subsys-number of error prone features of the RTSJ and proposed
tem of the RTSJ is one particular area where the RTSJ'sa profile for the development of high integrity software
generality creates complexity. This complexity is a prob- that follows the guidelines of the U.S. Nuclear Reg-
lem in high integrity systems as it can be the source of ulatory Commission (NRC) [8]. This profile is called
errors, and runtime overheads. Ravenscar-Java [13] and is inspired by the SPARK sub-
The contribution of this paper is a new high integrity set [1] of the Ada language and the earlier Ravenscar
profile for memory safe programming in Real-time Java. Ada profile [6].

This profile is notable in the sense that it does not re- |, this work we focus on the memory subsystem of
strict expressiveness of RTSJ programs, yet it guaranteesne rRTSJ and propose a new high integrity profile for
that no memory-related programming errors will 0CCUr - emory safe programming. At the onset our goal was
at runtime. The profile is machine checkable, and sim- , ovide: (1) a machine checkable profile that guaran-
ple enough that errors can be readily corrected. While tgeq that no memory error will ever occur at runtime, and
other profile have been put forward, this proposal is the (9) 4 profile that does not unduly restrict the expressive-
firstto have been evaluated on actual deployed software. <5 of RTSJ programs. We will demonstrate that both
goals have been achieved. The resulting profile is com-
patible with Ravenscar-Java, it simply replaces the por-
tions of Ravenscar dealing with the memory model. In
fact, we have defined a superset of Ravenscar, as we have
stricter correctness guarantees (our model statically en-
forces the absence of runtime errors and is provably cor-
rect) and allows more programs than Ravenscar.

1. Introduction

The Real-Time Specification for Java (RTSJ) [3] is
being used to construct large-scale Distributed Realtime
Embedded (DRE) systems [15, 17]. The key benefits
of the RTSJ are: first, that it allows programmers to  The RTSJ adopts a mixed-mode memory model in
write real-time programs in a type-safe language, thus which garbage collection is used for non-real time activ-
reducing many opportunities for catastrophic failures; ities, and manually allocated regions are used for real-
and second, that it allows hard-, soft- and non-real-time time tasks. The interaction of these two memory man-
codes to interoperate in the same execution environ-agement disciplines causes significant complexity and
ment. This is becoming increasingly important as multi- has the potential to cause runtime memory errors. In
million line DRE systems are being developed in Java, more detail, the above mentioned manually allocated
e.g. for avionics, shipboard computing and simulation. regions are calledcoped memory area®r scopes).

The success of these projects hinges on the RTSJ’s abil-Scopes provide memory to threads executing within
ity to combine plain Java components with real-time them, this memory is reclaimed when there are no more
ones. threads in the scope. Scopes have been specified to en-



1. Scoped memory areas (A, B, and C) are represented by special
TMORTAL HEAP meta-objects, instances StopedMemory, allocated in another
scope (SA, SB, and SC).
2. Scope-allocated objects can refer to objects in the ancestor scopes
or the heap. Objects in the heap (04) can refer to objects in im-
mortal memory.

SCOPER (2 @{”SWEC oI 3. Scopes have a reference count that denotes the number of threads
%\ e

85) currently active. If the count drops to O, the scope is reclaimed.
4. Objects in the scope can only be referenced from (a) local vari-
ables of an active thread, (b) fields of objects that can refer to the
W%EC% scope, and (c) the scope’s portal.
\“o 5. Scopes can be parented (A, B), or unparented (C). A scope is un-

parented if it has not been entered by a thread. A scope can be en-
tered by several threads which communicate by shared variables.

Figure 1. Scoped Memory Areas.

force one of the key properties of Java, namely, type- ORB originally written with the RTSJ.
safety. This boils down to ensuring that can never be

a pointer to a deleted object. The RTSJ uses runtimez. Related Work

checks at every reference assignment to ensure that this

property is respected. This means that any reference as- gaeBee and Rinard reported on the first implemented

signment, e.g. a simple statement suchigs = x, can o RTSJ memory management extensions in [2]. They
cause an exception to be thrown at runtime. In our ex- 5,04 it “close to impossible” to develop error-free real-
perience, this makes writing RTSJ code unnecessarily; o java programs without some help from debugging
complex and is, in general, impossible to check stati- tools or static analysis.
cally. Figure 1 summarizes the scoped memory areas. The difficulty of programming with the RTSJ has mo-
This paper builds on the work of Zhaet. al. [18] tivated Kwon, Wellings and King to propose Ravenscar-
to propose a practical profile. The key insight of the java [13], a high-integrity profile for real-time Java
Zhaoet. al. paper was that it is necessary to make the pased on earlier work for Ada [6]. The authors point
scope structure of the program explicit in order to have out that while Java is a better programming language
a tractable verification procedure. In essence, every timefor high-integrity system than C, there are some features
the programmer writes an allocation expression of the that are error prone. The goal of the profile is thus to de-
form new Object(), it should be possible to know stati- fine a subset of the RTSJ that can decrease the likeli-
caIIy (|e at verification time) where the object fitsin the hood of Catastrophic programming error in mission crit-
scope structure of the program. Itis not essential to know ical systems. Ravenscar mandates a S|mp||f|ed compu-
which particular scope it will be allocated it, but rather tational model. Applications will be split in two phases:
one should know the object’s relationship with other ob- an initialization phase in which data structures, scopes,
jects in the scope hierarchy. This ensures that when anand threads are created and have initial values assigned
assignment expression, e.gbj.f = new F(), Is encoun-  to them, and a mission phase in which the real-time logic
tered it is possible to guarantee that the left-hand side iSiS invoked. All memory areas are created in the initial-
allocated in the current scope or a scope that has strictlyjzation phase and reside in immortal memory, in other
longer lifetime. words, the scope hierarchy is flat. While Ravenscar sim-
The contributions of this paper are thus the defini- plifies the scope structure, it does not prevent memory
tion of a profile that extends Zhao’s [18] and that we access violation. A similar design was also advocated
have begun an empirical evaluation of our approach. Un- by Puschner [16].
like Zhao [18], we do not require extension or modifica- In [12], Kwon and Wellings propose another ap-
tion to the RTSJ, indeed our profile is defined so as to be proach for a simpler RTSJ memory management model.
able to run on a standard RTSJ VM. We describe a de-In that work they associate scoped memory areas with
tailed case study: the (partial) refactoring of the RTZen methods transparently. Thus avoiding the need for ex-
Object Request Broker (ORB) [10], a real-time CORBA plicit manipulation of memory areas. Their approach is



elegant and has the potential for catching many com-3.1. Programming Model

mon error by static analysis of the code. But they cannot

guarantee the absence of memory violation (in general The proposed profile has a simple and intuitive under-
the problem is undecidable). Furthermore, their scopeslying programming model. Rather than relying on RTSJ
cannot be multi-threaded and we see no obvious way toimplicit notion of allocation context, i.e. the last entered

handle the RTSJ idioms of Sec. 5.4. scope by the current thread, we enforce an explicit lexi-

Scoped types are one of the latest development incal discipline which guarantees that the relative location
the general area of type systems for controlled shar-0f any object is obvious from the program text. This is
ing of references. The goal of previous works such as achieved by equating Japackages to memory scopes.
Ownership Types [7] and Islands [9] was to restrict the The package hierarchy is used to specify the scope par-
scope of references in object-oriented programs for to enting relation. All instances of classes defined within
enable modular reasoning. The idea of using these techthe same package will be allocated together. A subpack-
niques for safety of region-based memory managementage defines a subscope. This simplifies reasoning about
was first discussed by Boyapati et al.[4]. But, unlike RTSJ programs as two objects can only be allocated in
this proposal, their work required changes to the Javathe same scope if their classes are defined in the same
syntax and explicit type annotations. The approach pro- package.
posed here is lighter, and matches more directly standard Fig. 2 illustrates the basic feature of the model. At
RTSJ idioms. runtime every scope is represented bycapeGate ob-

ject. Gates are allocated in the parent scope and are the

only object allowed to have references into the subscope.
3. AHigh Integrity Scoped Memory Profile Whenever application code calls a method on a gate, the

allocation context is switched to the scope associated to

The goal of the proposed high integrity profile for that gate for the duration of the method. Objects allo-
safe memory management is to ensure that memorycated within a scoped package are allowed to refer ob-
management errors will not occur during the execution jects defined in a parent package (just as in the RTSJ ob-
of mission critical Java programs. The RTSJ specifies Jects allocated in a scope are allowed to refer to a parent
that runtime exceptions should be generated in the fol- SCOPe). But as expected the converse is forbidden.
lowing three casesa] To prevent dangling references, The profile does not restrict non real-time Java codes,
an exception is generated if a reference to a scope-and especially the standard libraries. Plain Java objects
allocated object is ever assigned to the field of a longer are allocated in the (garbage collected) heap and can be
lived object, i.e. an object allocated in a scope which leftasis. This is important to support backward compat-
disjoint lifetime. @) To prevent interference from the ibility with legacy codes.
garbage collector, an error is generated if a hard real- The Scoped Memory Profile does impact the struc-
time task NoHeapRealtimeThread) attempts to read a  ture of Real-time Java programs. By giving an additional
field of a heap-allocated object)Finally, an exception ~ meaning to thepackage construct, wegde factoextend
is thrown if allowing a thread to enter a scope would the language. This form of overloading of language con-
cause that scope to have to distinct parents (referred tostructs has the same rationale as the definition of the
as thesingle parent rul® The model proposed guaran- RTSJ itself, namely to extend a language without chang-
teesat compile-timehat none of these errors will occur.  ing its syntax, compiler, or intermediate format. As for
Correctness of our proposal can be shown by reductionthe architectural changes, this discipline imposes a dif-
to the type system presented by Zhetoal. [18] which ferent kind of functional decomposition on programs.
covered some of the core features of the profile. A sim- Rather than grouping classes on the basis of some logi-
ple static analysis tool has been implemented to checkcal criteria, we group them by lifetime and function. In
the rules presented below and will report any errors at our experience, this decomposition is natural as RTSJ
verification time. It should be noted that no changes are programmers must think in terms of scopes and loca-
required to the Java development environment or virtual tions in their design. Thus it is not surprising to see
machine. The analysis tool is run on the bytecode beforethat classes that end up allocated in the same scope are
the application is run. It can be executed stand alone or,closely coupled, and grouping them in the same pack-
potentially, as part of a development environment such age is not shocking. Also this is, arguably, a small price
as Eclipse. Any program abiding by the rules of the pro- to pay for the associated static guarantees.
file is also a valid RTSJ program. The remainder of this section is devoted to present-



oo Borrowed arguments are used to loan objects to par-
Package PO ent scopes while ensuring that the parent cannot retain a
reference to this object. This allows for temporary relax-

'\Q"_ (O) ation of the scoping discipline (a feature needed in our
A

Gate P1 Object PO.A

\ application). For a formal treatment of the safety of bor-
N\, rowing see [5].
\ 3.1.2. Scoped ClasseA8 class defined within a scoped
package is termedscoped classSome restrictions ap-
@ ply to these classes.

Object P1.B

Threads C4 — A scoped class is visible only to classes in the
same package or subpackages. A gate class is visible
only to classes defined in the immediate super-package.

Figure 2. Programming Model. Each runtime C5 — An expression of a Scoped class type can be
scope has a corresponding Java package. Ob-  widened only to another class type defined in the same
jects defined in a package are always allocated package.

in the corresponding scope with the exception of 6 — Methods invoked on a variable of Scoped class
the scope’s Gate which is allocated in the parent type must be defined in the class’ defining package.
scope. All legal reference patterns are shown. C7 — A Scoped class may not definénalize method.

RuleC4 ensures that scoped classes defined in a pack-
age are accessible only to the classes defined in that
epackage and its subpackages, while gate classes are only
accessible to classes defined in their parent packages. In

3.1.1. Scoped Packagé package is acoped pack- ~ Other words, scoped classes a@t allowed to access
ageif it contains one class definition which extends the classes in subpackages (other than gates). These con-

ing the programming rules that are necessary to ensur
memory safety.

ScopeGate class. Packages that do not cont8irope- straints ensure that a package’s gate classes form an en-
Gate classes are referred to msv packagesWe define capsulation boundary for classes outside that package:
a distinguished Java package naniach for immortal scoped classes, and classes in subpackages are inside
memory. All classes defined in this package are neverthat encapsulation boundary. More importantly, they en-
reclaimed. sure that objects allocated in one scope may never have

_ outgoing inferences to objects allocated in inner scopes,
C1 — A scoped package must be a subpackagenof  and thus that illegal assignment errors can never happen.

or of another scoped package. _ _Rule C5 prevents type confusion, i.e. casting a Scoped
€2 — Classes in a scoped package may not define staticlass type toObject. Rule C6 prevents a more subtle
variables of object type. form of reference leak, within an inherited method the

Rule C1 is needed to prevent nonsensical packa e_receiver(i.eth_is) is implicitly cast to th_e method’s de_fin—
P P g ng class — this could lead to a leak if the method is de-

definitions, such as having a scoped package hang—oﬁJ

a raw package or a raw package be a subpackage Ofined in anqther package. . .
scoped package. Rulg2 is essential to prevent two RuleC7 is important for predictability. The RTSJ al-

gates of the same class from communicating via staticlows for finalization of objects within a scoped memory

variables (this can result in dangling references as the@'®&- While th's, IS 'con.S|st.ent W'th .J{:\va there are Sev-
gates have disjoint lifetimes). The fact that a package eral problems with finalization. First it is not clear which

can only have one parent package trivially ensure thattﬂre?d shﬁulddpgrform fmalgzat_lfonh,_thg logical choice is
the RTSJ single parent rule will hold. the last thread in scope. But if this isNbHeapReal-

timeThread (which is not allowed to read heap allocated
C3 — An argument to method which has been object) and some of the objects in the scope were cre-
annotated agborrowed cannot be assigned to a field ated by a simple real-time thread, a memory access er-
or local variable, or passed as argument to another  ror may occur. Conversely, if a real-time thread (but not
method unless the corresponding position is also a NoHeapRealtimeThread) is used, the finalization pro-
annotated agborrowed. Type widening of borrowed cedure may block for GC. Even if a solution is found for
argument is dissalowed. this problem (the RTSJ does not provide one) then there



is still the issue that finalization will introduce a degree trinsics. They can be allocated within any package — but
of unpredictability (the last thread out must clean up for will be prevented from being transferred or referenced
all threads in that scope). As a result we choose to for- across package boundaries.

bid finalization and instead rely on the gateReclama-

tion() method. C8 — Intrinsic class types are restricted to

_ . package-scoped (and private) fields and methods and
3.1.3. Scope GatesA scope gate, or gate, is an object cannot be widened to non-intrinsic class types.
that reifies scoped memory areas. Gates refsaope- C9 — Exceptions thrown from a scoped package must
dMemory objects (as well as the concept Bértal) in be allocated in the immortal package.

RTSJ. At runtime, there is a one-to-one mapping be- 10 —
tween runtime instances of a gate class and scoped mem-
ory areas. Each gate is associated to a an instande of
Memory, all objects allocated while executing within a
method of a scoped class are allocated in that scope. The

gate itself is allocated in the parent scope. Thus the gate  Rule €8 ensure that intrinsics will never leak across
object is the only object that can legally be stored in the packages. This restriction can be loosened by either
field of a class defined in the parent package. Thus gatesyrapping the intrinsic in a scoped class (which can be
have a special status, as they do not reside in the sam@hared with subpackages) or by using @eorrowed
memory scope as other classes of the same package, yeinnotation. Rul€9 ensures that exception object do not
they can refer to instances of these classes. leak references to scope allocated objects. Rdl@ is
Fig. 3 gives the interface of the parent class of all needed because many of the core Java method are na-
gates. Every gate is associated to a different instance oftive and cannot be checked, this gives an escape hatch
LTMemory, but this object is hidden from view and only  to the rules. Reflection is problematic as the method in-
used internally by the implementation. By convention voked is not known statically, Rulé11 simply forbids
we require these instancesldiMemory to be allocated  reflection. This seem adequate in the context of high in-
in immortal memory (this is because allocating them in tegrity systems.
the heap complicates the implementation of the RTSJ
VM). The ScopeGate methods include an exptiestt() 3.1.5. Allocation Contexts The allocation context of
method that is used to reclaim the contents of a scope.thread is tied to gates in the following fashion. When
The advantage ofeset() over the default reclamation- a thread invokes a method of a gate, the allocation con-
on-exit policy of the RTSJ is that it avoids the need of us- text is switched to memory area associated with the gate.
ing the wedge thread design pattern to keep a scope aliveSimilarly, when a method of any class residing in a dif-
(see Sec. 5.4.3)eset() is blocking and only takes effect ferent scoped package is invoked, the allocation context
when no threads are active within the gate. The methodis switched to the memory area in which the receiver ob-
onReclamation() is called when the last live thread ex- ject was allocated. In this way, the Scoped Types system
its a gate — the subclass of ScopeGate is free to add fi-ensures objects are instantiated into scopes correspond-
nalization code by overriding that method to provide a ing to their classes’ packages
finalization hook (see Fig. 3). Thactive() method re-
turns the count of active threads within the gate.
Scope gate methods can be annotated with the Java  abstract classScopeGate {

The only native methods that are allowed in a
scoped package are ones annotag@stopesafe.

C11 — Reflective calls are disallowed within a scoped
package.

5.0 annotation®reclaim and @force. The meaning of protected ScopeGate(LTMemory memory);
@reclaim is that thereset() method should be invoked public final void reset();
after the method returns as soon as the gate is inactive. public void onReclamation();

@force means that thread that invokes this method will public final int activeThreads();

have exclusive access to the scope. Exceptions will be
thrown in all other thread currently active in the gate. .
Combining @force and @reclaim ensure that a thread  Annotations:

will execute within a clean scope. @reclaim, @force, @borrowed, @scopesafe
3.1.4. Intrinsics Some basic types must be available in

all scopes, we refer to these as intrinsics. In the proposed
profile we support arrays, string buffers and strings as in-

Figure 3. The ScopeGate API.




C12 — An object constructor can only be invoked in its
defining package.

IMMORTAL SCOPE HEAP

SCOPE
Rule C12 prevents a subpackage from invokimsyy
on a class defined in a parent package. To do this pro-
grammers should provide a factory method in the parent
package.
The methods of the RTSJ scope memory areas classes
must not be used by application code as they would
change the allocation context in unpredictable ways.
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@ An Acceptor accepts a new connection request and cre-
ates a&Connection Scopehere a transpooHeapRealtime-
Thread waits for an incoming request. @ A buffer is ac-
quired and the appropriate GIOP Message Parser is queried
to decode the request header; the request is demultiplexed to

ACCEPTOR ||CONNECTION
SCOPE

POA SCOPE

(>

upcall objects

SCOPE

3.1.6. Heap AccesdNe use a special scoped package
imm.heap to hold pointers into the heap. This scoped

package is special in that it can hold references to ob-
jects defined in raw packages.

4. RTZen: A Real-Time Java ORB

The RTZen open-source ORB [10] is the first im-
plementation of Real-Time CORBA that does not rely

on C++ for predictable performance and quality of ser-
vice, but instead was designed from first principles to
use the Real-Time Specification for Java. Fig. 4 gives
an overview of the core of the RTZen ORB [11], in-

obtain the target POA. ThBOA Scopeassociated with that
adapter is used and the internal request data is initializ&).
The Thread Pool Scopis entered. A NHRT thread is selected
from one of the priority lanes in the thread pool. Control is

cluding connection management, data transfer, demulti-transfered to the selected thread which entersé Scope
plexing and concurrency control. Fig. 4 also shows how @ The POAImpl corresponding to the request is invoked; the
the ORB is organized into a number of RTSJ memory Sérvant is located; a new scratch scope is acquired from a scope
scopes. Under the RTSJ, the code of the ORB must ex-pool. The current threaenter()s theScratch Scoped The
plicitly manage these scopes, entering or executing codelDL skeleton is invoked. (® The servant code serves the re-

in the correct scope at the correct time. Any acciden- duest.

tal incorrect use of scopes is likely to breach the RTSJ'’s
constraints, crashing the ORB.

A complete description of the RTZen architecture
is beyond the scope of this paper. To give some idea
of the complexity of programming with RTSJ scoped ) _
memories, consider the scope management required t¢”OA scope and finds an availaleopedMemory for
dispatch a GIOP (generic inter-orb protocol) message Processing the request. RTZen keeps a pool of scopes for
to an application code for processing. Processing be-that purpose. When a request has to be handled, a scope
gins in aconnection scopdJpon reception of a connec- 1S removed from.the pool, eptered for the duration of the
tion request, an acceptor registers it and selects a realf®duest processing and exited once the request has been
time thread to handle messages for that connection. TheProcessed. This scheme guarantees that all objects that
thread’s event loop waits for data from the client. Once Were created while demarshalling and processing the re-
an incoming message is detectedudferManager (10- guest can be reglalmed. The last action performed b)_/ the
cated in theDRB Core scopavhich contains persistent handler thread is to get the POA to invoke the applica-
data structures) is contacted to obtain the proper mar-tion logic for that request.
shalling buffer. Then the request is demultiplexed to find
the proper Portable Object Adapter (POA). POA willin- 5. Refactoring RT-Zen with the Scope
voke the application code stub that services the request. ~ Memory Profile
Once a POA has been located, a thread will be selected,

Figure 4. RTZen Server ORB Architecture: Con-
trol flow path of an incoming request.

this is done be entering thtbread pool scopand find-
ing a NoHeapRealtimeThread with a priority matching

To provide a proof-of-concept for our proposal, we
refactored parts of RTZen (the new version is called

that of the message. The handler thread then enters th&coped Zen) to abide by the above described rules. We



did not refactor the standard CORBA interfaces, thus the Sec. 4). To do this, we annotated RTZen constructors to
entire system does not abide by all of our rules. But the log the scopes in which they were created, using reflex-
state of the refactoring gives us confidence that treatingive features of the RTSJ to identify the scopes. This anal-
the entire Zen is feasible. ysis showed that all of the scopes involved in the internal

The refactoring was done in four stages. First, we implementation of the ORB — the POA, acceptors, and
designed the scope structure for Scoped Zen, based oithread pool — have the same lifetime as the ORB scope.
the scopes used in RTZen. Second, we moved classedhis implied that there was no need to separate them:
amongst packages so that Scoped Zen’s package strucall these scopes could be combined into the main ORB
ture matched the scope structure. Third we tightenedscope. Fig. 5 shows the resulting architecture. The server
access mode and specialized the type signature of RTside of Scoped Zen consists of three scopes: the core
classes. Finally, we removed or replaced explicit RTSJ ORB scope, the connection scope, and a scope to handle
memory management idioms with equivalent constructs request processing. The client side of Scoped Zen con-
of our model. tains one more additional scope: the request waiter. The
latter is used by the client side to execute the methods
of org.omg.CORBA.Object hiding the internal CORBA
mechanism of accessing the server where the actual ser-
vant is located.

5.1. Step 1: Extracting the Scoped Memory Ar-
chitecture

RTZen consists of approximately79, 000 lines of ) )
Java code. This is a significant amount of code to refac-2-2- Step 2: Refactoring Classes into Scoped
tor. Much of this code — such as the library@fy.omg Packages
CORBA interfaces — is not real-time and does not use . . .
the features of the RTSJ. We therefore began by identi- W& require the classes of objects that will be allo-
fying those parts of the complete system that was usegcated within a partlcular' scope to be declargd within
within the real-time environment. For RTZen, this was the package corresponding to that scope. Having estab-

about 10% of the total, containing approximately 185 lished Scoped Zen's structure, we then had to relocate
instantiable real classes (as opposed to abstract classedaSSes into the correct packages, adjusting their defini-
and interfaces) and abolg, 000 lines of code. As we tions where necessary, and establish the necessary gate
needed to refactor only the real-time portion of the code, C1aSSes to give access to those scopes.

this is a key reduction of scale — although refactoring . OUr Scope analysis also allowed us to eliminate a
18,000 lines of RTSJ code remained a significant chal- 1a/g€ number of RTZen classes whose only functional-
lenge. ity was managing the proper execution of methods in

After identifying the real-time core of RTZen, we the right scopes at the right time. Additional analysis al-

then analysed its scope structure (that is, we gathered théowe_d us tlo il;rrgmlate deaﬁl classelg,.bTms I%ﬁ gs_ Ws'th ap- q
information presented earlier in Fig. 4 and discussed in proximately classes that would be needed in Scope

Zen, and a map (like Fig. 5 but including all classes)
showing which classes had to be allocated inside which

HEAP —— —— . _
SCOPE scope. These classes then had to be moved into the pack

ages representing their scopes. We moved scoped classes
= 398s 1P 9 P ped ca
into one of four new packages (three for the server side

ORB CORE SCOPE o o . .
| S of Scoped Zen and one for the client side), all subpack-
PN o> || > ages ofscope, corresponding to scopes in our architec-
AN tural design.

REQUEST PROCESSOR SCOPE

IMMORTAL SCOPE

CONNECTION SCOPE ‘

5.3. Step 3: Access Mode Adaption and Type
Specialization

NETWORK

Once the package structure of the program has been
Figure 5. Scoped Zen Server Scoped Memory Ar-  Created, we must make sure that field and class visi-
chitecture. bility are fixed to provide proper access to the mem-
bers in the new structure. Final fields must be refactored
into additional instance fields. Finally, since the integrity




ORB SCOPE .
2: eir.run()

class ExecutelnRunnable {
Runnable action;
MemoryArea area; a-odter
void mnt(_RunnabIe r,MemoryArea a) ACcEETCR
{ action =r; area=a; }

void run() { area.enter( action ); } SCRATCH
} 4: rp.run()

/ ) eir = new ExecutelnRunnable();

" Are rp = new ProcessorRunner(reply.getBuffer());
eir.init(rp, reqg.getScope());
orb.orbScope.executelnArea(eir);

eir

rp
(a) The Zen ExecutelnRunnable class (b) Scope Hierarchy (b) A typical use of EIR

Figure 6. The Execute In Runnable Idiom. This idiom is widely used in Zen. This example is taken from request
processing code. At runtime the code (1) enters the common parent, (2) executes the run() method of the EIR,
(3) then enters the acceptor scope, and finally (4) executes the application logic contained in the run() method
of ProcessorRunner.

rules prevent widening of scoped classes to non-scopedacceptor scope. To do this, a new EIR and a new pro-
classes, it is necessary to specialize types of fields andcessor are created. The EIR first changes allocation con-
arguments to methods. For instance, if a method takestext to the parent scoperp), and then enters the accep-
an argument of a non-scoped type, suctDagct, the tors scope and executes the code that will send the reply
method’s signature must be modified to become more (ProcessorRunner.run(), not shown here).

specific and to refer to the exact scoped type required.

This refactoring is rather tedi the t il The profile requires refactoring this code so that
s refactoring IS rather tedious as the type specializa- jyaihoq calls can be delegated from one scope’s gate to
tion often percolates across the class hierarchy. But the

. nother, effectively following the Law of Demeter [14].
refactoring does not change the structure of the code an(ﬂve thus avoid the need f@xecutelnRunnable objects
can be done in a few hours.

and other runnables such BscessRunner. Fig. 7 il-
lustrates the refactored version of the example. A new
5.4. Step 4: Refactoring Common Idioms method has been added to a cladBEImpl) defined in
the parent package. The body of this method contains

RTSJ programmers have adopted or developed athe contents of therocessorRunnable.run() method (in
number of programming idioms to manipulate scopes. this case a single call t&end(). TheProcessorRunnable
After changing the structure of RTZen, we need to con- class can be deleted and no EIR is needed.
vert these idioms into corresponding idioms that abide
by our rules. In almost every case, the resulting code was
simpler and more general, because it could directly ma- package imm.orb;
nipulate standard Java pbjects rather than haymg 10 ass ORBIMpI ...
crggte and manage special RTSJ scope meta-objects ex- imm.orb.acceptor. Transport transport;
plicitly. public void sendFromProcessor(WriteBuffer wb) {
transport.send(wb);

5.4.1. Sibling Scope InvocationA common problem }

in RTSJ is for a thread executing in one scope to in- .

voke a method within the allocation context of a sibling P2ckage imm.orb.requesprocessor,

scope. Since RTSJ disallows a thread to directly enter a

sibling scope another solution is needed. Execute in orb.sendFromProcessor(wb);

Runnablediom (or EIR) is a widely used idiom which

precisely addresses this problem. Fig. 6 illustrates this

idiom with a slightly simplified example from Zen. The Figure 7. Cross scope invocation using delega-
left-hand side shows the generic EIR class. The right-  tion.

hand side shows a fragment of the code processing in-
coming messages. Once a request has been received and
processed by the user, the reply must be sent from the




5.4.2. Thread Communication In the RTSJ a thread

entering a (new or existing) scope starts out without any
reference to objects already allocated within that scope.
It is often the case that different threads will enter the
same scope and need to communicate by shared vari-
ables, or that a thread needs to store objects in a scope classWedge ...

classORBImpl { ...
public ORBImplI(...) {
thread =
new NoHeapRealtimeThread(...scope...new Wedge(scope));

for future use. The RTSJ provides a single shared vari- public void run() {
able called a portal which can be used for this purpose. ORBImpl orb = (ORBImpl) scope.getPortal();
synchronized(orb) {
class ProcessorRunner implements Runnable { orb.wait();
WriteBuffer wb;
ProcessorRunner(WriteBuffer w) { wb = w; }
public void run() { Figure 9. A wedge thread used to keep a scope
ScopedMemory mem = alive.

RealtimeThread.getCurrentMemoryArea();
((Transport) mem.getPortal()).send(wb);

bl

the refactoring. The default RTSJ behavior can be ob-
tained by annotating methods of a gate w@eclaim.
Otherwise an explicit deallocation can be triggered by
callingreset(). One feature that is not directly supported
by the RTSJ is the@force annotation, this is useful in
cases where a high-priority thread must be guaranteed
access to an empty scope, even if some low priority
h thread is still executing within it. The method throws an
asynchronous exception in the low-priority thread and
reclaims the objects within the scope.

Figure 8. Portals. Inthe RTSJ a portal is a shared
variable for all threads within the same scope.

Fig. 8 illustrates a typical use of portals. Theces-
sorRunner class discussed earlier has a method whic
will be invoked within a scope different from the scope
where the object was created. The code first obtain the

current memory area, then obtains the portal object,5 4 4. Borrowed Objects While the RTSJ prevents as-
which is expected to be an instanceTednsport, then  signment of objects allocated in a subscope to fields of
finally invokes thesend() method. objects allocated in a parent scope, it is legal to assign

In our case, this complexity can be avoided by simply references to objects allocated in a subscope to a lo-
storing such shared variables in the fields of the scopecal variable. This means that in certain cases code ex-
gate object. This has the advantage that programmerscuting in a parent scope may manipulate objects allo-
can defined multlple shared variables and giVe them Cated in a Subscope (Or even a S|b||ng Scope)_ Th|s ac-
meaningful names and types. tually safe — it is a form of borrowing [5] — because the
5.4.3. Scope LifetimeThe lifetime of objects allo- ~ Subscope is pinned by the current thread. This pattern
cated within a scope is limited to the time one or more has been named theidge pattern as it can be used to
threads are active in the scope. When all threads exit, allestablish temporary communication channels between
objects, including the portal, are deallocated. This be- SCOpes. Great care must be taken when doing this as it is
havior is inconvenient for scopes that need to remain Very easy to confuse the allocation context of objects. In
live for longer periods of time. A rather inconvenient the profile, a restricted version of the bridge pattern is al-
(and wasteful) way to extend the lifetime of objects is to lowed. It is legal to hand out reference to any object to
use a, so-calledyedge threada real-time thread waits another method if the corresponding argument has been
within the scope, keeping it alive. A wedge thread is es- declared a@borrowed. Fig. 10 illustrates an example
sentially inert, and is only used to keep the scope active.Of borrowing in RTZen.
Fig. 9 illustrates an example of this idiom in RTZen. The
contents of the scope can be deleted by invokiotiy() 6. Conclusion
on the orb instance.

With the profile, the default behavior for a scope is to This paper is the first step towards a comprehensive
retain objects between invocations of the methods of theprofile for high-integrity real-time Java systems. The
scope’s gate. Thus we delete all wedge threads duringrules proposed here ensure that an important category



rh = new Handler();

reply = servant.invoke(rm.getOperation().toString(), rh);

@)

ServantProxy invoke(@borrowed String operation,

@borrowed Handler handler);

(b)

Figure 10. An example of borrowing. (2) RTZen code for invoking servant methods in which local objects es-
cape the current scope. (b) In Scoped Zen, this idiom is statically checked thanksa@bdhewed annotation
on theinvoke method.

of runtime errors can be prevented statically. The pro-
file is fully backwards compatible, it does not require
changes to the development environment of virtual ma- [10]
chine, and allows standard (non real-time) Java code to
remain as is.

We are in the process of formalizing the new features

of the profile and are investigating languages extensionsl!

to more directly support memory safe programming in
RTSJ.
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