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Abstract

The Real-time Specification for Java (RTSJ) has been
designed to cover a large spectrum of real-time applica-
tions, to achieve this goal the specification must cater to
different real-time programming styles. This generality
is essential for acceptance of Java by the industry but it
also means that there are many error modes that appli-
cation developers must deal with. The memory subsys-
tem of the RTSJ is one particular area where the RTSJ’s
generality creates complexity. This complexity is a prob-
lem in high integrity systems as it can be the source of
errors, and runtime overheads.

The contribution of this paper is a new high integrity
profile for memory safe programming in Real-time Java.
This profile is notable in the sense that it does not re-
strict expressiveness of RTSJ programs, yet it guarantees
that no memory-related programming errors will occur
at runtime. The profile is machine checkable, and sim-
ple enough that errors can be readily corrected. While
other profile have been put forward, this proposal is the
first to have been evaluated on actual deployed software.

1. Introduction

The Real-Time Specification for Java (RTSJ) [3] is
being used to construct large-scale Distributed Realtime
Embedded (DRE) systems [15, 17]. The key benefits
of the RTSJ are: first, that it allows programmers to
write real-time programs in a type-safe language, thus
reducing many opportunities for catastrophic failures;
and second, that it allows hard-, soft- and non-real-time
codes to interoperate in the same execution environ-
ment. This is becoming increasingly important as multi-
million line DRE systems are being developed in Java,
e.g. for avionics, shipboard computing and simulation.
The success of these projects hinges on the RTSJ’s abil-
ity to combine plain Java components with real-time
ones.

The expressiveness of the RTSJ does have disadvan-
tages. Any given application, which uses only the sub-
set of the RTSJ relevant for its particular real-time re-
quirements, will have to deal with the full range of error
modes allowed by the RTSJ. For hard real-timehigh in-
tegrity software systems it is essential to minimize the
likelihood of catastrophic runtime errors as these may
lead to, e.g., loss of life. Wellings et.al. have identified a
number of error prone features of the RTSJ and proposed
a profile for the development of high integrity software
that follows the guidelines of the U.S. Nuclear Reg-
ulatory Commission (NRC) [8]. This profile is called
Ravenscar-Java [13] and is inspired by the SPARK sub-
set [1] of the Ada language and the earlier Ravenscar
Ada profile [6].

In this work we focus on the memory subsystem of
the RTSJ and propose a new high integrity profile for
memory safe programming. At the onset our goal was
to provide: (1) a machine checkable profile that guaran-
tees that no memory error will ever occur at runtime, and
(2) a profile that does not unduly restrict the expressive-
ness of RTSJ programs. We will demonstrate that both
goals have been achieved. The resulting profile is com-
patible with Ravenscar-Java, it simply replaces the por-
tions of Ravenscar dealing with the memory model. In
fact, we have defined a superset of Ravenscar, as we have
stricter correctness guarantees (our model statically en-
forces the absence of runtime errors and is provably cor-
rect) and allows more programs than Ravenscar.

The RTSJ adopts a mixed-mode memory model in
which garbage collection is used for non-real time activ-
ities, and manually allocated regions are used for real-
time tasks. The interaction of these two memory man-
agement disciplines causes significant complexity and
has the potential to cause runtime memory errors. In
more detail, the above mentioned manually allocated
regions are calledscoped memory areas(or scopes).
Scopes provide memory to threads executing within
them, this memory is reclaimed when there are no more
threads in the scope. Scopes have been specified to en-
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1. Scoped memory areas (A, B, and C) are represented by special
meta-objects, instances ofScopedMemory, allocated in another
scope (SA, SB, and SC).

2. Scope-allocated objects can refer to objects in the ancestor scopes
or the heap. Objects in the heap (o4) can refer to objects in im-
mortal memory.

3. Scopes have a reference count that denotes the number of threads
currently active. If the count drops to 0, the scope is reclaimed.

4. Objects in the scope can only be referenced from (a) local vari-
ables of an active thread, (b) fields of objects that can refer to the
scope, and (c) the scope’s portal.

5. Scopes can be parented (A, B), or unparented (C). A scope is un-
parented if it has not been entered by a thread. A scope can be en-
tered by several threads which communicate by shared variables.

Figure 1. Scoped Memory Areas.

force one of the key properties of Java, namely, type-
safety. This boils down to ensuring that can never be
a pointer to a deleted object. The RTSJ uses runtime
checks at every reference assignment to ensure that this
property is respected. This means that any reference as-
signment, e.g. a simple statement such asobj.f = x, can
cause an exception to be thrown at runtime. In our ex-
perience, this makes writing RTSJ code unnecessarily
complex and is, in general, impossible to check stati-
cally. Figure 1 summarizes the scoped memory areas.

This paper builds on the work of Zhaoet. al. [18]
to propose a practical profile. The key insight of the
Zhaoet. al. paper was that it is necessary to make the
scope structure of the program explicit in order to have
a tractable verification procedure. In essence, every time
the programmer writes an allocation expression of the
form new Object(), it should be possible to know stati-
cally (i.e. at verification time) where the object fits in the
scope structure of the program. It is not essential to know
which particular scope it will be allocated it, but rather
one should know the object’s relationship with other ob-
jects in the scope hierarchy. This ensures that when an
assignment expression, e.g.obj.f = new F(), is encoun-
tered it is possible to guarantee that the left-hand side is
allocated in the current scope or a scope that has strictly
longer lifetime.

The contributions of this paper are thus the defini-
tion of a profile that extends Zhao’s [18] and that we
have begun an empirical evaluation of our approach. Un-
like Zhao [18], we do not require extension or modifica-
tion to the RTSJ, indeed our profile is defined so as to be
able to run on a standard RTSJ VM. We describe a de-
tailed case study: the (partial) refactoring of the RTZen
Object Request Broker (ORB) [10], a real-time CORBA

ORB originally written with the RTSJ.

2. Related Work

BeeBee and Rinard reported on the first implemented
the RTSJ memory management extensions in [2]. They
found it “close to impossible” to develop error-free real-
time Java programs without some help from debugging
tools or static analysis.

The difficulty of programming with the RTSJ has mo-
tivated Kwon, Wellings and King to propose Ravenscar-
Java [13], a high-integrity profile for real-time Java
based on earlier work for Ada [6]. The authors point
out that while Java is a better programming language
for high-integrity system than C, there are some features
that are error prone. The goal of the profile is thus to de-
fine a subset of the RTSJ that can decrease the likeli-
hood of catastrophic programming error in mission crit-
ical systems. Ravenscar mandates a simplified compu-
tational model. Applications will be split in two phases:
an initialization phase in which data structures, scopes,
and threads are created and have initial values assigned
to them, and a mission phase in which the real-time logic
is invoked. All memory areas are created in the initial-
ization phase and reside in immortal memory, in other
words, the scope hierarchy is flat. While Ravenscar sim-
plifies the scope structure, it does not prevent memory
access violation. A similar design was also advocated
by Puschner [16].

In [12], Kwon and Wellings propose another ap-
proach for a simpler RTSJ memory management model.
In that work they associate scoped memory areas with
methods transparently. Thus avoiding the need for ex-
plicit manipulation of memory areas. Their approach is
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elegant and has the potential for catching many com-
mon error by static analysis of the code. But they cannot
guarantee the absence of memory violation (in general
the problem is undecidable). Furthermore, their scopes
cannot be multi-threaded and we see no obvious way to
handle the RTSJ idioms of Sec. 5.4.

Scoped types are one of the latest development in
the general area of type systems for controlled shar-
ing of references. The goal of previous works such as
Ownership Types [7] and Islands [9] was to restrict the
scope of references in object-oriented programs for to
enable modular reasoning. The idea of using these tech-
niques for safety of region-based memory management
was first discussed by Boyapati et al. [4]. But, unlike
this proposal, their work required changes to the Java
syntax and explicit type annotations. The approach pro-
posed here is lighter, and matches more directly standard
RTSJ idioms.

3. A High Integrity Scoped Memory Profile

The goal of the proposed high integrity profile for
safe memory management is to ensure that memory
management errors will not occur during the execution
of mission critical Java programs. The RTSJ specifies
that runtime exceptions should be generated in the fol-
lowing three cases: (a) To prevent dangling references,
an exception is generated if a reference to a scope-
allocated object is ever assigned to the field of a longer
lived object, i.e. an object allocated in a scope which
disjoint lifetime. (b) To prevent interference from the
garbage collector, an error is generated if a hard real-
time task (NoHeapRealtimeThread) attempts to read a
field of a heap-allocated object. (c) Finally, an exception
is thrown if allowing a thread to enter a scope would
cause that scope to have to distinct parents (referred to
as thesingle parent rule). The model proposed guaran-
teesat compile-timethat none of these errors will occur.
Correctness of our proposal can be shown by reduction
to the type system presented by Zhaoet. al. [18] which
covered some of the core features of the profile. A sim-
ple static analysis tool has been implemented to check
the rules presented below and will report any errors at
verification time. It should be noted that no changes are
required to the Java development environment or virtual
machine. The analysis tool is run on the bytecode before
the application is run. It can be executed stand alone or,
potentially, as part of a development environment such
as Eclipse. Any program abiding by the rules of the pro-
file is also a valid RTSJ program.

3.1. Programming Model

The proposed profile has a simple and intuitive under-
lying programming model. Rather than relying on RTSJ
implicit notion of allocation context, i.e. the last entered
scope by the current thread, we enforce an explicit lexi-
cal discipline which guarantees that the relative location
of any object is obvious from the program text. This is
achieved by equating Javapackages to memory scopes.
The package hierarchy is used to specify the scope par-
enting relation. All instances of classes defined within
the same package will be allocated together. A subpack-
age defines a subscope. This simplifies reasoning about
RTSJ programs as two objects can only be allocated in
the same scope if their classes are defined in the same
package.

Fig. 2 illustrates the basic feature of the model. At
runtime every scope is represented by aScopeGate ob-
ject. Gates are allocated in the parent scope and are the
only object allowed to have references into the subscope.
Whenever application code calls a method on a gate, the
allocation context is switched to the scope associated to
that gate for the duration of the method. Objects allo-
cated within a scoped package are allowed to refer ob-
jects defined in a parent package (just as in the RTSJ ob-
jects allocated in a scope are allowed to refer to a parent
scope). But as expected the converse is forbidden.

The profile does not restrict non real-time Java codes,
and especially the standard libraries. Plain Java objects
are allocated in the (garbage collected) heap and can be
left as is. This is important to support backward compat-
ibility with legacy codes.

The Scoped Memory Profile does impact the struc-
ture of Real-time Java programs. By giving an additional
meaning to thepackage construct, we,de factoextend
the language. This form of overloading of language con-
structs has the same rationale as the definition of the
RTSJ itself, namely to extend a language without chang-
ing its syntax, compiler, or intermediate format. As for
the architectural changes, this discipline imposes a dif-
ferent kind of functional decomposition on programs.
Rather than grouping classes on the basis of some logi-
cal criteria, we group them by lifetime and function. In
our experience, this decomposition is natural as RTSJ
programmers must think in terms of scopes and loca-
tions in their design. Thus it is not surprising to see
that classes that end up allocated in the same scope are
closely coupled, and grouping them in the same pack-
age is not shocking. Also this is, arguably, a small price
to pay for the associated static guarantees.

The remainder of this section is devoted to present-
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Figure 2. Programming Model. Each runtime
scope has a corresponding Java package. Ob-
jects defined in a package are always allocated
in the corresponding scope with the exception of
the scope’s Gate which is allocated in the parent
scope. All legal reference patterns are shown.

ing the programming rules that are necessary to ensure
memory safety.

3.1.1. Scoped PackageA package is ascoped pack-
ageif it contains one class definition which extends the
ScopeGate class. Packages that do not containScope-
Gate classes are referred to asraw packages. We define
a distinguished Java package namedimm for immortal
memory. All classes defined in this package are never
reclaimed.

C1 — A scoped package must be a subpackage ofimm
or of another scoped package.

C2 — Classes in a scoped package may not define static
variables of object type.

Rule C1 is needed to prevent nonsensical package
definitions, such as having a scoped package hang-off
a raw package or a raw package be a subpackage of
scoped package. RuleC2 is essential to prevent two
gates of the same class from communicating via static
variables (this can result in dangling references as the
gates have disjoint lifetimes). The fact that a package
can only have one parent package trivially ensure that
the RTSJ single parent rule will hold.

C3 — An argument to method which has been
annotated as@borrowed cannot be assigned to a field
or local variable, or passed as argument to another

method unless the corresponding position is also
annotated as@borrowed. Type widening of borrowed

argument is dissalowed.

Borrowed arguments are used to loan objects to par-
ent scopes while ensuring that the parent cannot retain a
reference to this object. This allows for temporary relax-
ation of the scoping discipline (a feature needed in our
application). For a formal treatment of the safety of bor-
rowing see [5].

3.1.2. Scoped ClassesA class defined within a scoped
package is termed ascoped class. Some restrictions ap-
ply to these classes.

C4 — A scoped class is visible only to classes in the
same package or subpackages. A gate class is visible

only to classes defined in the immediate super-package.
C5 — An expression of a Scoped class type can be

widened only to another class type defined in the same
package.

C6 — Methods invoked on a variable of Scoped class
type must be defined in the class’ defining package.

C7 — A Scoped class may not define afinalize method.

RuleC4 ensures that scoped classes defined in a pack-
age are accessible only to the classes defined in that
package and its subpackages, while gate classes are only
accessible to classes defined in their parent packages. In
other words, scoped classes arenot allowed to access
classes in subpackages (other than gates). These con-
straints ensure that a package’s gate classes form an en-
capsulation boundary for classes outside that package:
scoped classes, and classes in subpackages are inside
that encapsulation boundary. More importantly, they en-
sure that objects allocated in one scope may never have
outgoing inferences to objects allocated in inner scopes,
and thus that illegal assignment errors can never happen.
Rule C5 prevents type confusion, i.e. casting a Scoped
class type toObject. Rule C6 prevents a more subtle
form of reference leak, within an inherited method the
receiver (i.e.this) is implicitly cast to the method’s defin-
ing class – this could lead to a leak if the method is de-
fined in another package.

RuleC7 is important for predictability. The RTSJ al-
lows for finalization of objects within a scoped memory
area. While this is consistent with Java there are sev-
eral problems with finalization. First it is not clear which
thread should perform finalization, the logical choice is
the last thread in scope. But if this is aNoHeapReal-
timeThread (which is not allowed to read heap allocated
object) and some of the objects in the scope were cre-
ated by a simple real-time thread, a memory access er-
ror may occur. Conversely, if a real-time thread (but not
a NoHeapRealtimeThread) is used, the finalization pro-
cedure may block for GC. Even if a solution is found for
this problem (the RTSJ does not provide one) then there
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is still the issue that finalization will introduce a degree
of unpredictability (the last thread out must clean up for
all threads in that scope). As a result we choose to for-
bid finalization and instead rely on the gateonReclama-
tion() method.

3.1.3. Scope GatesA scope gate, or gate, is an object
that reifies scoped memory areas. Gates replaceScope-
dMemory objects (as well as the concept ofPortal) in
RTSJ. At runtime, there is a one-to-one mapping be-
tween runtime instances of a gate class and scoped mem-
ory areas. Each gate is associated to a an instance ofLT-
Memory, all objects allocated while executing within a
method of a scoped class are allocated in that scope. The
gate itself is allocated in the parent scope. Thus the gate
object is the only object that can legally be stored in the
field of a class defined in the parent package. Thus gates
have a special status, as they do not reside in the same
memory scope as other classes of the same package, yet
they can refer to instances of these classes.

Fig. 3 gives the interface of the parent class of all
gates. Every gate is associated to a different instance of
LTMemory, but this object is hidden from view and only
used internally by the implementation. By convention
we require these instances ofLTMemory to be allocated
in immortal memory (this is because allocating them in
the heap complicates the implementation of the RTSJ
VM). The ScopeGate methods include an explicitreset()
method that is used to reclaim the contents of a scope.
The advantage ofreset() over the default reclamation-
on-exit policy of the RTSJ is that it avoids the need of us-
ing the wedge thread design pattern to keep a scope alive
(see Sec. 5.4.3).reset() is blocking and only takes effect
when no threads are active within the gate. The method
onReclamation() is called when the last live thread ex-
its a gate – the subclass of ScopeGate is free to add fi-
nalization code by overriding that method to provide a
finalization hook (see Fig. 3). Theactive() method re-
turns the count of active threads within the gate.

Scope gate methods can be annotated with the Java
5.0 annotations@reclaim and@force. The meaning of
@reclaim is that thereset() method should be invoked
after the method returns as soon as the gate is inactive.
@force means that thread that invokes this method will
have exclusive access to the scope. Exceptions will be
thrown in all other thread currently active in the gate.
Combining@force and @reclaim ensure that a thread
will execute within a clean scope.

3.1.4. Intrinsics Some basic types must be available in
all scopes, we refer to these as intrinsics. In the proposed
profile we support arrays, string buffers and strings as in-

trinsics. They can be allocated within any package – but
will be prevented from being transferred or referenced
across package boundaries.

C8 — Intrinsic class types are restricted to
package-scoped (and private) fields and methods and

cannot be widened to non-intrinsic class types.
C9 — Exceptions thrown from a scoped package must

be allocated in the immortal package.
C10 — The only native methods that are allowed in a

scoped package are ones annotated@scopesafe.
C11 — Reflective calls are disallowed within a scoped

package.

RuleC8 ensure that intrinsics will never leak across
packages. This restriction can be loosened by either
wrapping the intrinsic in a scoped class (which can be
shared with subpackages) or by using the@borrowed
annotation. RuleC9 ensures that exception object do not
leak references to scope allocated objects. RuleC10 is
needed because many of the core Java method are na-
tive and cannot be checked, this gives an escape hatch
to the rules. Reflection is problematic as the method in-
voked is not known statically, RuleC11 simply forbids
reflection. This seem adequate in the context of high in-
tegrity systems.

3.1.5. Allocation ContextsThe allocation context of
thread is tied to gates in the following fashion. When
a thread invokes a method of a gate, the allocation con-
text is switched to memory area associated with the gate.
Similarly, when a method of any class residing in a dif-
ferent scoped package is invoked, the allocation context
is switched to the memory area in which the receiver ob-
ject was allocated. In this way, the Scoped Types system
ensures objects are instantiated into scopes correspond-
ing to their classes’ packages

abstract classScopeGate {
protected ScopeGate(LTMemory memory);
public final void reset();
public void onReclamation();
public final int activeThreads();

}

Annotations:

@reclaim, @force, @borrowed, @scopesafe

Figure 3. The ScopeGate API.
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C12 — An object constructor can only be invoked in its
defining package.

RuleC12 prevents a subpackage from invokingnew
on a class defined in a parent package. To do this pro-
grammers should provide a factory method in the parent
package.

The methods of the RTSJ scope memory areas classes
must not be used by application code as they would
change the allocation context in unpredictable ways.

3.1.6. Heap AccessWe use a special scoped package
imm.heap to hold pointers into the heap. This scoped
package is special in that it can hold references to ob-
jects defined in raw packages.

4. RTZen: A Real-Time Java ORB

The RTZen open-source ORB [10] is the first im-
plementation of Real-Time CORBA that does not rely
on C++ for predictable performance and quality of ser-
vice, but instead was designed from first principles to
use the Real-Time Specification for Java. Fig. 4 gives
an overview of the core of the RTZen ORB [11], in-
cluding connection management, data transfer, demulti-
plexing and concurrency control. Fig. 4 also shows how
the ORB is organized into a number of RTSJ memory
scopes. Under the RTSJ, the code of the ORB must ex-
plicitly manage these scopes, entering or executing code
in the correct scope at the correct time. Any acciden-
tal incorrect use of scopes is likely to breach the RTSJ’s
constraints, crashing the ORB.

A complete description of the RTZen architecture
is beyond the scope of this paper. To give some idea
of the complexity of programming with RTSJ scoped
memories, consider the scope management required to
dispatch a GIOP (generic inter-orb protocol) message
to an application code for processing. Processing be-
gins in aconnection scope. Upon reception of a connec-
tion request, an acceptor registers it and selects a real-
time thread to handle messages for that connection. The
thread’s event loop waits for data from the client. Once
an incoming message is detected, aBufferManager (lo-
cated in theORB Core scopewhich contains persistent
data structures) is contacted to obtain the proper mar-
shalling buffer. Then the request is demultiplexed to find
the proper Portable Object Adapter (POA). POA will in-
voke the application code stub that services the request.
Once a POA has been located, a thread will be selected,
this is done be entering thethread pool scopeand find-
ing a NoHeapRealtimeThread with a priority matching
that of the message. The handler thread then enters the
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1© An Acceptor accepts a new connection request and cre-
ates aConnection Scopewhere a transportNoHeapRealtime-
Thread waits for an incoming request. 2© A buffer is ac-
quired and the appropriate GIOP Message Parser is queried
to decode the request header; the request is demultiplexed to
obtain the target POA. ThePOA Scopeassociated with that
adapter is used and the internal request data is initialized.3©
TheThread Pool Scopeis entered. A NHRT thread is selected
from one of the priority lanes in the thread pool. Control is
transfered to the selected thread which enters thePOA Scope.
4© The POAImpl corresponding to the request is invoked; the
servant is located; a new scratch scope is acquired from a scope
pool. The current threadenter()s theScratch Scope. 5© The
IDL skeleton is invoked. 6© The servant code serves the re-
quest.

Figure 4. RTZen Server ORB Architecture: Con-
trol flow path of an incoming request.

POA scope and finds an availableScopedMemory for
processing the request. RTZen keeps a pool of scopes for
that purpose. When a request has to be handled, a scope
is removed from the pool, entered for the duration of the
request processing and exited once the request has been
processed. This scheme guarantees that all objects that
were created while demarshalling and processing the re-
quest can be reclaimed. The last action performed by the
handler thread is to get the POA to invoke the applica-
tion logic for that request.

5. Refactoring RT-Zen with the Scope
Memory Profile

To provide a proof-of-concept for our proposal, we
refactored parts of RTZen (the new version is called
Scoped Zen) to abide by the above described rules. We
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did not refactor the standard CORBA interfaces, thus the
entire system does not abide by all of our rules. But the
state of the refactoring gives us confidence that treating
the entire Zen is feasible.

The refactoring was done in four stages. First, we
designed the scope structure for Scoped Zen, based on
the scopes used in RTZen. Second, we moved classes
amongst packages so that Scoped Zen’s package struc-
ture matched the scope structure. Third we tightened
access mode and specialized the type signature of RT
classes. Finally, we removed or replaced explicit RTSJ
memory management idioms with equivalent constructs
of our model.

5.1. Step 1: Extracting the Scoped Memory Ar-
chitecture

RTZen consists of approximately179, 000 lines of
Java code. This is a significant amount of code to refac-
tor. Much of this code — such as the library oforg.omg
CORBA interfaces — is not real-time and does not use
the features of the RTSJ. We therefore began by identi-
fying those parts of the complete system that was used
within the real-time environment. For RTZen, this was
about 10% of the total, containing approximately 185
instantiable real classes (as opposed to abstract classes
and interfaces) and about18, 000 lines of code. As we
needed to refactor only the real-time portion of the code,
this is a key reduction of scale — although refactoring
18, 000 lines of RTSJ code remained a significant chal-
lenge.

After identifying the real-time core of RTZen, we
then analysed its scope structure (that is, we gathered the
information presented earlier in Fig. 4 and discussed in
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Figure 5. Scoped Zen Server Scoped Memory Ar-
chitecture.

Sec. 4). To do this, we annotated RTZen constructors to
log the scopes in which they were created, using reflex-
ive features of the RTSJ to identify the scopes. This anal-
ysis showed that all of the scopes involved in the internal
implementation of the ORB — the POA, acceptors, and
thread pool — have the same lifetime as the ORB scope.
This implied that there was no need to separate them:
all these scopes could be combined into the main ORB
scope. Fig. 5 shows the resulting architecture. The server
side of Scoped Zen consists of three scopes: the core
ORB scope, the connection scope, and a scope to handle
request processing. The client side of Scoped Zen con-
tains one more additional scope: the request waiter. The
latter is used by the client side to execute the methods
of org.omg.CORBA.Object hiding the internal CORBA
mechanism of accessing the server where the actual ser-
vant is located.

5.2. Step 2: Refactoring Classes into Scoped
Packages

We require the classes of objects that will be allo-
cated within a particular scope to be declared within
the package corresponding to that scope. Having estab-
lished Scoped Zen’s structure, we then had to relocate
classes into the correct packages, adjusting their defini-
tions where necessary, and establish the necessary gate
classes to give access to those scopes.

Our scope analysis also allowed us to eliminate a
large number of RTZen classes whose only functional-
ity was managing the proper execution of methods in
the right scopes at the right time. Additional analysis al-
lowed us to eliminate dead classes. This left us with ap-
proximately 140 classes that would be needed in Scoped
Zen, and a map (like Fig. 5 but including all classes)
showing which classes had to be allocated inside which
scope. These classes then had to be moved into the pack-
ages representing their scopes. We moved scoped classes
into one of four new packages (three for the server side
of Scoped Zen and one for the client side), all subpack-
ages ofscope, corresponding to scopes in our architec-
tural design.

5.3. Step 3: Access Mode Adaption and Type
Specialization

Once the package structure of the program has been
created, we must make sure that field and class visi-
bility are fixed to provide proper access to the mem-
bers in the new structure. Final fields must be refactored
into additional instance fields. Finally, since the integrity
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class ExecuteInRunnable {
Runnable action;
MemoryArea area;
void init(Runnable r,MemoryArea a)

{ action = r; area = a; }
void run() { area.enter( action ); }

}

2:  eir.run()

SCRATCH

ORB SCOPE

eirrp

1: executeInArea3: enter

4: rp.run()

ACCEPTOR
SCOPE

eir = new ExecuteInRunnable();
rp = new ProcessorRunner(reply.getBuffer());
eir.init(rp, req.getScope());
orb.orbScope.executeInArea(eir);

(a) The Zen ExecuteInRunnable class (b) Scope Hierarchy (b) A typical use of EIR

Figure 6. The Execute In Runnable Idiom. This idiom is widely used in Zen. This example is taken from request
processing code. At runtime the code (1) enters the common parent, (2) executes the run() method of the EIR,
(3) then enters the acceptor scope, and finally (4) executes the application logic contained in the run() method
of ProcessorRunner.

rules prevent widening of scoped classes to non-scoped
classes, it is necessary to specialize types of fields and
arguments to methods. For instance, if a method takes
an argument of a non-scoped type, such asObject, the
method’s signature must be modified to become more
specific and to refer to the exact scoped type required.
This refactoring is rather tedious as the type specializa-
tion often percolates across the class hierarchy. But the
refactoring does not change the structure of the code and
can be done in a few hours.

5.4. Step 4: Refactoring Common Idioms

RTSJ programmers have adopted or developed a
number of programming idioms to manipulate scopes.
After changing the structure of RTZen, we need to con-
vert these idioms into corresponding idioms that abide
by our rules. In almost every case, the resulting code was
simpler and more general, because it could directly ma-
nipulate standard Java objects rather than having to
create and manage special RTSJ scope meta-objects ex-
plicitly.

5.4.1. Sibling Scope InvocationA common problem
in RTSJ is for a thread executing in one scope to in-
voke a method within the allocation context of a sibling
scope. Since RTSJ disallows a thread to directly enter a
sibling scope another solution is needed. TheExecute in
Runnableidiom (or EIR) is a widely used idiom which
precisely addresses this problem. Fig. 6 illustrates this
idiom with a slightly simplified example from Zen. The
left-hand side shows the generic EIR class. The right-
hand side shows a fragment of the code processing in-
coming messages. Once a request has been received and
processed by the user, the reply must be sent from the

acceptor scope. To do this, a new EIR and a new pro-
cessor are created. The EIR first changes allocation con-
text to the parent scope (orb), and then enters the accep-
tors scope and executes the code that will send the reply
(ProcessorRunner.run(), not shown here).

The profile requires refactoring this code so that
method calls can be delegated from one scope’s gate to
another, effectively following the Law of Demeter [14].
We thus avoid the need forExecuteInRunnable objects
and other runnables such asProcessRunner. Fig. 7 il-
lustrates the refactored version of the example. A new
method has been added to a class (ORBImpl) defined in
the parent package. The body of this method contains
the contents of theProcessorRunnable.run() method (in
this case a single call tosend(). TheProcessorRunnable
class can be deleted and no EIR is needed.

package imm.orb;

class ORBImpl ...
imm.orb.acceptor.Transport transport;
public void sendFromProcessor(WriteBuffer wb) {

transport.send(wb);
}

package imm.orb.requesprocessor;

...
orb.sendFromProcessor(wb);
..

Figure 7. Cross scope invocation using delega-
tion.
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5.4.2. Thread Communication In the RTSJ a thread
entering a (new or existing) scope starts out without any
reference to objects already allocated within that scope.
It is often the case that different threads will enter the
same scope and need to communicate by shared vari-
ables, or that a thread needs to store objects in a scope
for future use. The RTSJ provides a single shared vari-
able called a portal which can be used for this purpose.

class ProcessorRunner implements Runnable {
WriteBuffer wb;
ProcessorRunner(WriteBuffer w) { wb = w; }
public void run() {

ScopedMemory mem =
RealtimeThread.getCurrentMemoryArea();
((Transport) mem.getPortal()).send(wb);

} }

Figure 8. Portals. In the RTSJ a portal is a shared
variable for all threads within the same scope.

Fig. 8 illustrates a typical use of portals. TheProces-
sorRunner class discussed earlier has a method which
will be invoked within a scope different from the scope
where the object was created. The code first obtain the
current memory area, then obtains the portal object,
which is expected to be an instance ofTransport, then
finally invokes thesend() method.

In our case, this complexity can be avoided by simply
storing such shared variables in the fields of the scope
gate object. This has the advantage that programmers
can defined multiple shared variables and give them
meaningful names and types.

5.4.3. Scope LifetimeThe lifetime of objects allo-
cated within a scope is limited to the time one or more
threads are active in the scope. When all threads exit, all
objects, including the portal, are deallocated. This be-
havior is inconvenient for scopes that need to remain
live for longer periods of time. A rather inconvenient
(and wasteful) way to extend the lifetime of objects is to
use a, so-called,wedge thread: a real-time thread waits
within the scope, keeping it alive. A wedge thread is es-
sentially inert, and is only used to keep the scope active.
Fig. 9 illustrates an example of this idiom in RTZen. The
contents of the scope can be deleted by invokingnotify()
on the orb instance.

With the profile, the default behavior for a scope is to
retain objects between invocations of the methods of the
scope’s gate. Thus we delete all wedge threads during

classORBImpl { ...
public ORBImpl(...) {

thread =
new NoHeapRealtimeThread(...scope...new Wedge(scope));

classWedge ...
public void run() {

ORBImpl orb = (ORBImpl) scope.getPortal();
synchronized(orb) {

...
orb.wait();
...

Figure 9. A wedge thread used to keep a scope
alive.

the refactoring. The default RTSJ behavior can be ob-
tained by annotating methods of a gate with@reclaim.
Otherwise an explicit deallocation can be triggered by
calling reset(). One feature that is not directly supported
by the RTSJ is the@force annotation, this is useful in
cases where a high-priority thread must be guaranteed
access to an empty scope, even if some low priority
thread is still executing within it. The method throws an
asynchronous exception in the low-priority thread and
reclaims the objects within the scope.

5.4.4. Borrowed ObjectsWhile the RTSJ prevents as-
signment of objects allocated in a subscope to fields of
objects allocated in a parent scope, it is legal to assign
references to objects allocated in a subscope to a lo-
cal variable. This means that in certain cases code ex-
ecuting in a parent scope may manipulate objects allo-
cated in a subscope (or even a sibling scope). This ac-
tually safe – it is a form of borrowing [5] – because the
subscope is pinned by the current thread. This pattern
has been named thebridge pattern as it can be used to
establish temporary communication channels between
scopes. Great care must be taken when doing this as it is
very easy to confuse the allocation context of objects. In
the profile, a restricted version of the bridge pattern is al-
lowed. It is legal to hand out reference to any object to
another method if the corresponding argument has been
declared as@borrowed. Fig. 10 illustrates an example
of borrowing in RTZen.

6. Conclusion

This paper is the first step towards a comprehensive
profile for high-integrity real-time Java systems. The
rules proposed here ensure that an important category
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rh = new Handler();
...
reply = servant.invoke(rm.getOperation().toString(), rh);

ServantProxy invoke(@borrowed String operation,
@borrowed Handler handler);

(a) (b)

Figure 10. An example of borrowing. (a) RTZen code for invoking servant methods in which local objects es-
cape the current scope. (b) In Scoped Zen, this idiom is statically checked thanks to the@borrowed annotation
on theinvoke method.

of runtime errors can be prevented statically. The pro-
file is fully backwards compatible, it does not require
changes to the development environment of virtual ma-
chine, and allows standard (non real-time) Java code to
remain as is.

We are in the process of formalizing the new features
of the profile and are investigating languages extensions
to more directly support memory safe programming in
RTSJ.
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