ScalaQL: Language-Integrated Database Queries
for Scala

Daniel Spiewak and Tian Zhao

University of Wisconsin — Milwaukee
{dspiewak,tzhao}Quwm.edu

Abstract. One of the most ubiquitous elements of modern computing is
the relational database. Very few modern applications are created with-
out some sort of database backend. Unfortunately, relational database
concepts are fundamentally very different from those used in general-
purpose programming languages. This creates an impedance mismatch
between the the application and the database layers. One solution to
this problem which has been gaining traction in the .NET family of lan-
guages is Language-Integrated Queries (LINQ). That is, the embedding
of database queries within application code in a way that is statically
checked and type safe. Unfortunately, certain language changes or core
design elements were necessary to make this embedding possible. We
present a framework which implements this concept of type safe embed-
ded queries in Scala without any modifications to the language itself.
The entire framework is implemented by leveraging existing language
features (particularly for-comprehensions).

1 Introduction

One of the most persistent problems in modern application development is that of
logical, maintainable access to a relational database. One of the primary aspects
of this problem is impedance mismatch [7] between the relational model and the
paradigm employed by most general-purpose programming languages. Concepts
are expressed very differently in a relational database than in a standard memory
model. As a result, any attempt to adapt one to the other usually results in an
interface which works well for most of the time, but occasionally produces strange
and unintuitive results.

One solution to this problem of conceptual orthogonality is to “give up”
attempting to adapt one world to the other. Instead of forcing objects into the
database or tables into the memory model, it is possible to simply allow the
conceptual paradigms to remain separate. This school of thought says that the
application layer should retrieve data as necessary from the relational store by
using concepts native to a relational database: declarative query languages such
as SQL. This allows complete flexibility on the database side in terms of how the
data can be expressed in the abstract schema. It also gives the application layer
a lot of freedom in how it deals with the extracted data. As there is no relational
store to constrain language features, the application is able to deal with data on

its own terms. All of the conflict between the dissonant concepts is relegated to
a discrete segment of the application.

This is by far the simplest approach to application-level database access,
but it is also the most error-prone. Generally speaking, this technique is im-
plemented by embedding relational queries within application code in the form
of raw character strings. These queries are unparsed and completely unchecked
until runtime, at which point they are passed to the database and their re-
sults converted using more repetitive and unchecked routines. It is incredibly
easy even for experienced developers to make mistakes in the creation of these
queries. Even excluding simple typos, it is always possible to confuse identifier
names, function arities or even data types. Worse yet, the process of constructing
a query in string form can also lead to serious security vulnerabilities — most
commonly SQL injection. None of these problems can be found ahead of time
without special analysis.

The Holy Grail of embedded queries is to find some way to make the host
language compiler aware of the query and capable of statically eliminating these
runtime issues. As it turns out, this is possible within many of the .NET language
family through a framework known as LINQ [8]. Queries are expressed using
language-level constructs which can be verified at compile-time. Furthermore,
queries specified using LINQ also gain a high degree of composability, meaning
that elements common to several queries can often be factored into a single
location, improving maintainability and reducing the risk of mistakes. It is very
easy to use LINQ to create a trivial database query requesting the names of all
people over the age of 18:

var Names = from p in Person
where p.Age > 18
select p.Name;

This will evaluate (at runtime) an SQL query of the following form:
SELECT name FROM people WHERE age > 18

Unfortunately, this sort of embedding requires certain language features which
are absent from most non-homoiconic [10] languages. Specifically, the LINQ
framework needs the ability to directly analyze the structure of the query at
runtime. In the query above, we are filtering the query results according to the
expression p.Age > 18. C# evaluation uses call-by-value semantics, meaning
that this expression should evaluate to a bool. However, we don’t actually want
this expression to evaluate. LINQ needs to somehow inspect this expression to
determine the equivalent SQL in the query generation step. This is where the
added language features come into play.

While it is possible for Microsoft to simply extend their language with this
particular feature, lowly application developers are not so fortunate. For exam-
ple, there is no way for anyone (outside of Sun Microsystems) to implement any
form of LINQ within Java because of the language modifications which would be
required. We faced a similar problem attempting to implement LINQ in Scala.

Fortunately, Scala is actually powerful enough in and of itself to implement
a form of LINQ even without adding support for expression trees. Through a
combination of operator overloading, implicit conversions, and controlled call-
by-name semantics, we have been able to achieve the same effect without making
any changes to the language itself. In this paper, we present not only the result-
ing Scala framework, but also a general technique for implementing other such
internal DSLs requiring advanced analysis and inspection prior to evaluation.

Note that throughout this paper, we use the term “internal DSL” [4] to refer
to a domain-specific language encoded as an API within a host language (such
as Haskell or Scala). We prefer this term over the often-used “embedded DSL”
as it forms an obvious counterpoint to “external DSL”, a widely-accepted term
for a domain-specific language (possibly not even Turing Complete) which is
parsed and evaluated just like a general-purpose language, independent of any
host language.

In the rest of the paper, Section 2 introduces ScalaQL and shows some ex-
amples of its use. Section 3 gives a general overview of the implementation and
the way in which arbitrary expression trees may be generated in pure Scala.
Finally, Section 4 draws some basic comparisons with LINQ, HaskellDB and
similar efforts in Scala and other languages.

2 ScalaQL

The entire ScalaQL DSL is oriented around a single Scala construct: the for-
comprehension. This language feature is something of an amalgamation of Haskell’s
do-notation and its list-comprehensions, rendered within a syntax which looks
decidedly like Java’s enhanced for-loops. One trivial application of this con-
struct might be to construct a sequence of 2-tuples of all integers between 0 and

5 such that their sum is even:

val tuples = for {
x <- 0 to b
y <- 0 to 5
if (x +y) % 2 ==
} yield (x, y)

There are really three separate components to this syntax. The first is the gen-
erator (e.g. x <= ...), which sets up the local variable x containing the current
element in the comprehension. The second component is the filter (if ...),
which defines the conditions under which this comprehension holds. Finally, we
have the yield clause, which defines the result in terms of the variables set up
by the generator(s). There may be any number of generators and filters, but
only one yield.

Every for-comprehension is parsed into a corresponding series of calls to
methods flatMap, map and filter.! The map and filter methods are standard

! Unless the for-comprehension lacks a yield, in which case foreach replaces flatMap
and map.

higher-order utility functions. The flatMap method is effectively Scala’s version
of Haskell’s >>= operator (monadic bind). It is defined for collections as a com-
position of the map and flatten functions. By rewriting for-comprehensions
in terms of other language elements at parse time, Scala empowers third-party
frameworks (such as ScalaQL) to exploit the syntax simply by implementing the
relevant methods.

Altogether, this syntax provides a way of working with Scala collections in an
almost declarative fashion reminiscent of a query language. In fact, it is possible
to make use of for-comprehensions to perform SQL-like queries against Scala
collections. For example:

// regular Scala collections, not ScalaQL

val people: List[Person] = ...
val companies: List[Company] = ...

val underAge = for {
p <- people
¢ <- companies

if p.company == c
if p.age < 14
} yield p

This expression yields a List of all people under the age of 14 who are employed
by some company. If we were to formulate this same query in SQL, the result
would be something like this:

SELECT p.* FROM people p JOIN companies c ON p.company_id = c.id
WHERE p.age < 14

Intuitively, for-comprehensions are a natural syntactic device for representing
declarative queries against generic collections. ScalaQL makes it possible to use
that same syntax to represent database queries. Using ScalaQL, we can take
our query example from earlier and slightly adapt it into something that will
actually run against a database:

val underAge = for {
p <- Person
¢ <- Company

if p.company is c
if p.age < 14
} yield p
Recall that for-comprehensions are translated into a corresponding series of calls

to flatMap, map and filter. In this case, the first (outermost) call to flatMap
will be targetted on the Person object. This is what allows ScalaQL to “hijack”

the for-comprehension syntax. Person must implement — or inherit from a type
which implements — the flatMap and map methods such that an an abstract
representation of the query is produced (see Section 3).

The primary syntactic difference between this and the same query run against
Scala List(s) is the use of the is operator (rather than ==) to test equality. This
is necessary because of the way that Scala handles the == method.? Amazingly
enough, it is the only syntactic concession made by the framework. All other
String, Int and Boolean operators work exactly as expected. For example, the
< operator is used above to compare p.age to the integer literal, 14.

The above expression will produce an instance of Query [Person], one which
will produce a sequence of Person entities when evaluated. ScalaQL does not
evaluate queries at declaration point. Instead, evaluation is deferred until the
query is actually used as a sequence. For example:

underAge foreach { p => println(p.firstName + ' ' + p.lastName) }

The foreach method is not declared for type Query. When the Scala compiler
sees this invocation, it determines that an implicit conversion from Query [Person]
to Seq[Person] is required in order to make everything work. This implicit con-
version is transparently injected into the bytecode by the Scala compiler and
invoked at runtime just prior to the invocation of foreach. It is this implicit
conversion, defined by ScalaQL, which handles the query evaluation.

The primary advantage to this deferred evaluation is it allows queries to
be treated compositionally. For example, we might want to construct a query
which finds all of the under-age employees working at MegaCorp. Rather than
redundantly defining the query constraints for under-age workers, we can simply
build our new query by composing with the old:

val megaCorpEmps = for {

p <- underAge

if p.company.name is "MegaCorp"
} yield p

If we were to evaluate the megaCorpEmps query, it would execute SQL against
the database very similar to the following:

SELECT p.* FROM people p JOIN companies c¢ ON p.company_id = c.id
WHERE p.age < 14 AND c.name = 'MegaCorp'

2.1 Projection

So far, all of the queries we have expressed using ScalaQL have had a very
simple yield statement, producing an instance of Query parameterized against

2 Unlike other symbolic methods, Scala defines == as an alias for equals. Our ex-
periments revealed some bugs in Scala’s type checker when either equals or == are
defined to return anything other than Boolean (unrelated and well-formed sections
of code would arbitrarily fail to type-check).

an entity type. ScalaQL is also capable of projecting on single fields as well as
arbitrary record types defined as anonymous classes. This makes it possible to
define type safe projections with arbitrary fields.

Single-field and single-expression projection works exactly as expected. We
define our yield clause in terms of the row locals defined in the generators (e.g.
p or c), using fields, operators and values in the same fashion as in the filters.
For example:

val names = for {
p <- Person
if p.age > 18

} yield p.lastName

This defines an instance of type Query [Varchar] which produces the last names
of all of the people in the database over the age of 18. With a few slight modi-
fications, we can actually produce the concatenation of the first and last names
in the standard “Last, First” format:

val names = for {
p <- Person
if p.age > 18
} yield p.lastName + ", " + p.firstName

When evaluated, this query will execute SQL similar to the following:

SELECT CONCAT(CONCAT(p.last_name, ', '), p.first_name)
FROM people p
WHERE p.age > 18

One particularly thorny aspect of projection which has been a difficult area for
similar query DSLs in the past is that of multi-field projection. In SQL, it is
possible to construct a query which produces a subset of the resulting fields; not
just one field, but several. This is difficult because it requires the ad-hoc definition
of new record types corresponding to the fields in question. While classes are
technically a form of record type, very few languages sufficiently facilitate the
definition of classes on a case-by-case basis. When each query requires a different
record type (class) for its projection, query definition becomes a very tedious
affair.

Fortunately, Scala provides a lightweight syntax for defining Java-style anony-
mous inner-classes which extend AnyRef. This syntax (which actually comes from
C+#) makes it easy to define new classes at query-site without becoming syntac-
tically burdensome:

val people = for {
p <- Person
if p.age > 18
} yield new {
val firstName = p.firstName
val lastName = p.lastName

3

This query selects only the first name and last_name fields from the people
table. The new { ... } syntax defines a new anonymous inner-class containing
two fields: firstName and lastName. This type will be used to populate the
query results. Thus, the type of the people value is Query [$t], where $t is the
type of the anonymous inner-class (this type is hidden by Scala’s type inference,
hence the use of the “$t” notation). We can demonstrate this fact by iterating
over the query results and accessing fields:

people foreach { p => println(p.firstName + ' ' + p.lastName) }

3 Implementation

The most important guiding concept of ScalaQL’s implementation is that of the
abstract query tree, which is similar in principle to an abstract syntax tree used
in the implementation of most programming languages. Unlike most internal
DSLs, ScalaQL does not immediately evaluate the invocation syntax into a final
result. Instead, it creates an abstract representation of the desired query in an
AST-like structure. This structure is what is actually contained by a value of
type Query. When the Query is converted to a Seq, the abstract query tree is
converted into the corresponding SQL, which is evaluated against the database
to produce the final result.

The query tree is composed of three elements: views, projections and expres-
sions. Views directly correspond to relations in relational algebra and may be
either tables or queries (another abstract query tree). Projections have three
different forms, each corresponding to one of the three different projection types
supported by ScalaQL: single field, single table and field subset. Projections may
also contain expressions in cases where the yield clause is not a simple field or
entity:

for {
p <- Person

} yield p.firstName + " " + p.lastName
y p p

Expressions are where most of the interest lies. The addition of abstract ex-
pression trees as first-class values was one of the primary changes in C# 3.0 as
required by LINQ. Since Scala does not have this feature, we must find a way
to construct expression trees using a different approach.

The solution is a combination of implicit conversions and operator overload-
ing. In the above example, we have given the sub-expression p.firstName + " ".
While p. firstName may appear to be a field of type String, it actually has type
Varchar, which extends the StringExpression class. This class defines a num-
ber of methods, including +, an operator which takes another StringExpression
as a parameter. We have defined an implicit conversion from type String to
StringExpression, allowing literal strings to be concatenated onto abstract
StringExpression(s). The result of this + method is an abstract expression
node, AddStr, which also extends StringExpression.

Of course, strings are not the only data type manipulated by SQL expressions.
For this reason, we have also created implementations for NumericExpression,
BooleanExpression and TimeExpression. Each of these classes defines operator
methods according to how their respective type is expected to behave. Thus,
NumericExpression defines +, *, % and more, while BooleanExpression defines
&&, || and so on. Every expression class extends Expression, which defines
operator methods common to all expressions: is and !=.

All of these operations return abstract expression nodes representing the
specific operation in question. These nodes each resolve to a different SQL op-
eration or function, making it possible to effectively compile Scala expressions
into SQL at runtime. In a sense, the expression DSL parses code which appears
to be conventional String, Int and Boolean expressions into a structure very
reminiscent of a compiler’s abstract syntax tree. This tree can then undergo a
code generation phase, which produces the corresponding SQL.

Type safety is ensured by the fact that the operator methods in each ex-
pression class will only accept certain parameter types. Thus, it is impossible
to concatenate a StringExpression and a NumericExpression; the + operator
method in StringExpression only accepts another StringExpression. Inher-
ited operator methods like is and != are guaranteed type safety through the use
of an abstract type declared in the Expression superclass. This type effectively
allows the parameters for any operator methods in Expression to vary covari-
antly with subtyping, ensuring that it is impossible to test a NumericExpression
and a BooleanExpression for equality.

The other advantage to this approach in general (besides type safety) is that
it allows optimizations and other in-depth analysis to be performed against the
abstract expression tree prior to resolution (code generation). Normally, a DSL
evaluates directly to its final result, making it very difficult to perform any sort
of non-trivial processing on the instructions. This is because direct evaluation
effectively restricts any processing to a single pass over the instructions. By
evaluating to an intermediate form (the expression tree), we make it possible to
perform multi-pass analysis (including optimization) against a complete repre-
sentation of the DSL instructions.

4 Related Work

SQLJ [9] embeds SQL into Java and is statically typed. However, dynamic
queries are not supported as every SQLJ query is converted in a pre-compilation
step. While not technically a language extension, SQLJ is certainly not “plain-
old Java”. SchemeQL [12] is similar to SQLJ in that it processes embedded query
statements using an external preprocessor, but without providing any static typ-
ing. Safe Query Object [1] achieves many of the same goals as SQLJ, all while
working within regular Java syntax. Users specify queries using special Java
classes which are compiled into JDO queries. Safe Query Object also supports
a wide variety of query operations including existential quantification, param-
eters and dynamic queries. However, like SQLJ, a special compilation step is

required to perform the conversion. As mentioned previously, systems such as
LINQ [8] support SQL-like queries through language extensions. Java Language
Extender [11] is another framework which operates in this fashion.

Of all of the projects in this field, HaskellDB [6] is likely the most similar
to our approach in that it functions as an internal domain-specific language.
Operations such as filter, join and conditionals are all supported in a statically
checked, type safe environment provided by Haskell’s type system. However,
Haskell imposes heavier restrictions on function overloading than does Scala.
Thus, HaskellDB is forced to use operators like .+. instead of the more familiar
+ when summing query values. Also, Scala’s implicit conversions are in some
ways more powerful than Haskell’s type classes. ScalaQL allows the use of integer
literals directly in query expressions, while HaskellDB requires the explicit use
of the constant function.

Related to HaskellDB is the Pan language [3]. While Pan has very little
to do with database queries, it does demonstrate the power of internal DSL
construction with an intermediate form. Like ScalaQL, Pan relies on carefully-
constructed ADTSs to statically ensure well-formedness of DSL expressions. The
authors of Pan also discuss ways in which the intermediate form of the DSL may
be leveraged in the implementation of advanced optimizations and analyses.

The ARARAT [5] framework provides similar query functionality in C++
through the use of preprocessor directives, operator overloading and templates.
Its focus is primarily on directly representing relational algebra within the syntax
of C++, rather than a more “familiar” dialect like SQL. Thus, a join is repre-
sented using the * operator, rather than through a more mainstream nomen-
clature. ARARAT does share what is perhaps ScalaQL’s most important feature
in that it represents views in their abstract form, allowing queries to be highly
compositional and easily optimized. ARARAT provides a large amount of type
safety in the construction and composition of queries, but it does not extend that
safety to the evaluation of those queries and subsequent parsing of the results.
Queries are simply converted to char* using the asSQL() function. This differs
from ScalaQL, which converts abstract views into properly type safe sequences
during evaluation. This limitation is not entirely surprising given the fact that
C++ lacks a generic database access framework like JDBC.

Various non-academic efforts have also been made to solve this problem of
language embedded queries based on real-world requirements. Ambition [2] is a
widely-used internal DSL for Ruby which provides a very natural syntax for con-
structing queries. Notably, its core framework is not restricted to merely database
access; it has also been applied to other query domains such as LDAP and XPath.
However, as can be expected from a framework designed for a dynamically-typed
language like Ruby, Ambition provides no static guarantees regarding query cor-
rectness.

A project very similar to ScalaQL has been developed independently by Ste-
fan Zeiger [13]. Like ScalaQL, this project aims to provide a framework for type
safe queries within Scala using for-comprehensions. However, despite this simi-
larity, there are some important differences. ScalaQL makes use of the pseudo-

monadic filter operation for declaring query conditionals, allowing the use
of the if syntax in for-comprehensions. Zeiger’s framework defines a separate
series of methods for this (though it can use filter for some conditionals). Pro-
jection differs greatly between the frameworks, with ScalaQL relying on anony-
mous inner-classes while Zeiger’s framework uses field combinators to generate
arbitrary views (e.g. firstName - lastName - age).

5 Summary

In this paper, we have given a brief overview of the ScalaQL framework, focus-
ing specifically on static type safety and syntactic intuitiveness. By exploiting
the existing for-comprehension construct, ScalaQL blends seamlessly with con-
ventional query-like operations performed on Scala collections. We predict that
ScalaQL — or something like it — will become an important part of general-
purpose Scala ORM frameworks in the future.

References

1. W. R. Cook and S. Rai. Safe Query Objects: Statically typed objects as remotely
executable queries. In Proceedings of the International Conference on Software
Engineering (ICSE), pages 97-106, 2005.

2. Chris Defunkt. Ruby’s Ambition. http://ambition.rubyforge.org/, 2008.

3. Conal Elliott, Sigbjern Finne, and Oege De Moor. Compiling Embedded Lan-
guages. Journal of Functional Programming, 13(03):455-481, 2003.

4. Martin Fowler. Domain Specific Language. http://www.martinfowler.com/
bliki/DomainSpecificLanguage.html, 2007.

5. Joseph (Yossi) Gil and Keren Lenz. Simple and safe SQL queries with C++ tem-
plates. In GPCE ’07: Proceedings of the 6th international conference on Generative
programming and component engineering, pages 13—24, 2007.

6. D. Leijen and E. Meijer. Domain specific embedded compilers. In Proceedings of
the 2nd Conference on Domain-Specific Languages, pages 109-122, 1999.

7. David Maier. Representing database programs as objects. In Advances in database
programming languages, pages 377-386. ACM, 1990.

8. E. Meijer, B. Beckman, and G. M. Bierman. LINQ: Reconciling object, relations
and XML in the .NET framework. In Proceedings of the ACM Symposium on
Principles Database Systems, 2006.

9. Jim Melton and Andrew Eisenberg. Understanding SQL and Java together: a guide
to SQLJ, JDBC, and related technologies. Morgan Kaufmann, 2000.

10. Guy L. Steele, Jr. Common LISP: the language. Digital Press, 1984.

11. Eric Van Wyk, Lijesh Krishnan, Derek Bodin, and Eric Johnson. Adding domain-
specific and general purpose language features to java with the java language ex-
tender. In Companion to the 21st ACM SIGPLAN symposium on Object-oriented
programming systems, languages, and applications, pages 728-729, 2006.

12. Noel Welsh, Francisco Solsona, and Ian Glover. SchemeUnit and SchemeQL: Two
little languages. In Third Workshop on Scheme and Functional Programming, 2002.

13. Stefan Zeiger. A Type-Safe Database Query DSL for Scala. http://szeiger.de/
blog/2008/12/21/a-type-safe-database-query-dsl-for-scala/, 2008.

10

