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Abstract. The process of understanding and reusing
software is often time-consuming, especially in legacy
code and open-source libraries. While some core code
of open-source libraries may be well-documented, it is
frequently the case that open-source libraries lack in-
formative API documentation and reliable design infor-
mation. As a result, the source code itself is often the
sole reliable source of information for program under-
standing activities. In this article, we propose a reverse-
engineering approach that can provide assistance during
the process of understanding software through the au-
tomatic recovery of hidden design patterns in software
libraries. Specifically, we use ontology formalism to rep-
resent the conceptual knowledge of the source code and
semantic rules to capture the structures and behaviors
of the design patterns in the libraries. Several software
libraries were examined with this approach and the eval-
uation results show that effective and flexible detection
of design patterns can be achieved without using hard-
coded heuristics.

Key words: Design Patterns – Design Recovery – Soft-
ware Maintenance – Ontology Formalisms – Knowledge
Representation – Semantic Inference

1 Introduction

Design patterns provide reusable solutions to common
object-oriented design problems. They are viewed as a
natural way of decoupling the bindings between system
components so that systems can be more understand-
able, scalable, and adaptable [7]. The concept of de-
sign patterns in the context of object-oriented design
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was popularized by the Gang-of-Four (GoF) [15]. Since
then, patterns have been widely used for documenting
and structuring new software libraries 1 as well as com-
prehending and re-engineering existing legacy software.

During development, design patterns can be used to
understand the libraries being reused and to speed-up
the development process by providing tested design tem-
plates that can be used to solve design dilemmas. On the
other hand, during the process of refactoring and main-
tenance, design knowledge can provide a better glimpse
into design intent and thus establishes a better founda-
tion for high-level understanding of the structure, orga-
nization, and the interaction between the components of
the system being maintained.

Unfortunately, for some legacy systems and large open-
source libraries, such design knowledge is not richly doc-
umented, which leaves the source-code itself as the only
mean for capturing design intent. Therefore, the software
engineering community has been interested in provid-
ing effective reverse-engineering approaches to analyze
source code and recover the lost design rationale that
can be depicted in the form of design patterns.

To that end, we propose an effective and usable reverse-
engineering approach that is based on semantic tech-
niques to detect design pattern instances from source
code. This approach provides a formal, explicit, and semantic-
based representation of the conceptual knowledge of source
code. It is solely reliant on ontology modeling and semantic-
based techniques from the emerging field of Semantic
Web [4]. The fundamental hypothesis we explore in this
article is that representing software knowledge using on-
tology formalisms and semantic techniques is effective
in improving the precision of recovering design pattern
information.

1 Although they have a few distinguishing features, we use the
terms ‘library’, ‘framework’, and ‘software system’ interchangeably
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1.1 Semantics-enabled Design Recovery

Semantic Web technologies have been a great asset in
providing solutions for various domain specific problems.
Ontologies are the backbone technology for formal and
explicit representation of knowledge in the Semantic Web.
Due to their formal reasoning foundation, ontologies can
play an important role in domain engineering. One can
use ontologies to structure and build a source-code knowl-
edge base that can be used by software agents and serve
as an effective base for semantic queries [13,26].

This research contributes to the proper linking of
the established field of program understanding with the
emerging field of Semantic Web by developing ontol-
ogy models for the problem of design pattern recov-
ery and semantic knowledge-representation. Our ontol-
ogy model includes a Source Code Representation Ontol-
ogy (SCRO). This ontology is created to provide an ex-
plicit representation of the conceptual knowledge struc-
ture found in source code. SCRO provides an effective
base model for understanding the relationships and de-
pendencies among source-code artifacts in a software
system. Therefore, SCRO serves as a basis for design
pattern recovery and can be utilized by other applica-
tions that require semantic knowledge at the source code
level. Since SCRO is primarily used for building a soft-
ware knowledge base, a set of parsing tools have been
developed to instantiate the ontology with ontology in-
stances that represent source code artifacts.

In the context of design pattern recovery, we have
also designed and developed a design pattern ontology
sub-model. This sub-model extends SCRO’s vocabulary
and includes an upper design-pattern ontology that is
further extended with a specific ontology for each in-
dividual design pattern. This setup provides flexibility
and transparency during the pattern detection process.
The current state-of-the-art tools in design pattern re-
covery hardcode the descriptions and roles of individual
design-pattern participants. This limits the usability and
flexibility of such tools since users have no control over
these descriptions. However, using ontology representa-
tion, design patterns can be specified externally within
their respective ontologies and their participants are de-
picted using semantic rules that can be easily relaxed
or fortified by users according to their needs. Therefore,
we further hypothesize that ontology representation of
software knowledge enables a flexible mechanism of de-
sign recovery through rule relaxation, which may detect
more pattern instances.

Our earlier work [1] explores the notion of using se-
mantic techniques for design pattern recovery. The work
presented in this article delves into the details and ex-
tends the previous work in the following primary direc-
tions:

– We provide a refined description of the proposed ap-
proach that further investigates the issue of ontology

modeling and how it can be properly used to detect
design patterns.

– We present updated ontology models that include an
enhanced source-code ontology as well as new design
pattern ontologies.

– We include additional support for detecting a wider
range of design patterns.

– We enhance the process of knowledge population with
a new parser that captures additional aspects of source-
code that allows higher levels of source-code analysis.

– We present a more detailed performance evaluation
and empirical case studies using a new tool imple-
mented as a plugin for the Eclipse platform.

In the following section, we provide the necessary
background that is needed for understanding the pro-
posed methodology. In particular, we introduce the con-
cepts, languages, and Semantic Web technologies that
are employed in our approach to program understanding
and design recovery. Furthermore, this section provides
a detailed discussion of our source-code ontology model
and the process we use to instantiate this model and
generate the knowledge base.

2 Ontology Modeling for Design Pattern
Recovery

The research presented in this article seeks to leverage
program understanding and design recovery using on-
tological modeling with the help of various Semantic
Web techniques. Central to our approach is an ontol-
ogy model that captures heterogeneous sources of con-
ceptual knowledge found in source code by modeling the
most important aspects of its internal structure. This
kind of modeling serves as the basis for providing ef-
ficient and common access to relevant information re-
sources. Once the ontology model is formally defined and
represented using an appropriate taxonomy, the model
needs to be automatically populated with ontological in-
stances. These instances are the basic building blocks for
constructing and populating a knowledge base that can
be accessed through semantic queries. The following sub-
sections provide an overview of ontology modeling and
discuss the process of structuring and building a seman-
tic knowledge base for source-code artifacts.

2.1 Ontologies and the Semantic Web

Ontology is a term originally used in Philosophy. It de-
scribes the nature of being or the kinds of existence and
their basic categories and relationships. Computer scien-
tists have borrowed this term and used it in many differ-
ent areas, including Knowledge Engineering, Database
Theory, Artificial Intelligence, Software Engineering, and
Information Retrieval and Extraction. More recently, this
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term has been exploited by the Semantic Web commu-
nity. Scientists have provided many definitions for this
term. The most widely-used definition is from Gruber [16]:
”An ontology is an explicit specification of a conceptual-
ization”. In other words, an ontology provides a working
strategy and a framework of general concepts, objects,
properties, and other entities in a domain of discourse
and the relationships that hold among the various do-
main concepts.

In technical terms, an ontology is a data model for a
particular domain that consists of machine-interpretable
definitions of classes that describe a set of concepts, in-
terrelationships among these classes, structural proper-
ties of classes, and constraints expressed as axioms. In-
dividuals (or instances) of classes are the basic concrete
objects of an ontology. The individuals may or may not
be part of an ontology but the ontology must provide a
way for classifying these individuals.

Ontologies are the backbone of the Semantic Web.
The vision of the Semantic Web [4] relies on structur-
ing and organizing data in a way that makes it easy for
people to understand and for machines, software pro-
grams, and agents to process. Due to their ability to
enable automated knowledge sharing and understand-
ing, ontologies are used as the knowledge representa-
tion component of the Semantic Web vision. To this
end, various ontology modeling languages and Seman-
tic Web technologies have emerged and are currently
used in various domains. In this work, we utilize the
Web Ontology Language (OWL) [25], the Resource De-
scription Framework (RDF) [23], the Semantic Web Rule
Language (SWRL) [27], and the SPARQL protocol and
query language [29].

OWL is the standard web ontology language. It is
used to create machine-understandable definitions of the
precise meanings of domain concepts and to capture the
relationship of the concepts. OWL-DL is a sub-language
of OWL based on Description Logic (DL). Due to its
decidability and completeness, OWL-DL has desirable
computational properties for reasoning systems. OWL-
DL’s expressive power and reasoning support enable in-
ferring additional knowledge and computing the classifi-
cation hierarchy (subsumption reasoning). RDF is used
as flexible and expressive data representation model suit-
able for describing resources and for formally represent-
ing machine-processable semantics of data. SWRL ex-
tends OWL expressive power with Horn rules that are
similar to the Prolog or DATALOG rules. These rules
can be combined with OWL knowledge bases for rea-
soning and computing entailments. Finally, SPARQL is
a SQL-like query language and protocol for ontological
querying of RDF metadata.

In what follows, we describe how these Semantic Web
languages and technologies contribute to our approach.
In particular, the next two subsections show how OWL-
DL and RDF are used to obtain a precise formal rep-
resentation of various source-code artifacts. These rep-

Fig. 1. An excerpt of the SCRO’s taxonomy

resentations form the basis for semantic reasoning and
inference of additional facts which can be retrieved using
SPARQL semantic queries. Sect. 3 explores the SWRL
language in more details and provides an overview of how
semantic rules can be used to further extend OWL rep-
resentations to handle features that cannot be expressed
using OWL alone.

2.2 Structuring the Knowledge Base

We have developed a Source Code Representation Ontol-
ogy (SCRO) using OWL-DL constructs. This ontology is
created to support major program understanding tasks
by explicitly representing the conceptual-knowledge struc-
tures found in source code. It serves as a base model
for understanding the relationships and dependencies
among source-code artifacts. SCRO captures major con-
cepts and features of object-oriented programs including:

– encapsulation mechanisms,
– class inheritance and interface implementation,
– aggregation relationship between objects
– type and subtype information including nested and

anonymous classes,
– method overloading and overriding,
– method signatures and invocations,
– access control mechanisms,
– language-specific features such as enumeration and

annotation, and
– control structures (repetition, selection, and sequence

controls).

A partially expanded fragment of the ontology’s tax-
onomy is shown in Fig. 1 and the complete ontology can
be found online [2].

SCRO’s knowledge is represented using the OWL-DL
ontology language. Each of the ontology classes shown
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in Fig. 1 corresponds to a concept in the object-oriented
programming domain. Collectively, these classes form
the taxonomy tree of the ontology where owl:Thing is the
root (superclass) of this subsumption hierarchy. An on-
tology class is interpreted as a set that defines a group of
individuals sharing some properties. Disjoint subclasses
are also modeled in SCRO to define different sets of in-
dividuals. For example, all individuals that are members
of the class InstanceMethod are necessarily members of
class Method since Method subsumes InstanceMethod

but none of these individuals can be simultaneously a
member of another subclass of Method.

SCRO is precise, accurate, well-documented, and care-
fully designed with ontology reuse [35] in mind. SCRO
is available online, which allows researchers to reuse or
extend its representational components to support any
semantic-based application that requires source-code knowl-
edge. SCRO was created using Protégé 2 ontology editor
and verified using Pellet [33] OWL-DL reasoner. In ad-
dition to performing different forms of ontology checking
such as consistency and subsumption checking, the rea-
soner is primarily used to infer additional information
that is not explicitly stated within the ontology using
the set of asserted ontology facts and axioms.

Various object properties, sub-properties, data prop-
erties, and ontological axioms are defined within SCRO
to represent relationships among concepts by linking in-
dividuals from different OWL classes. A subset of SCRO’s
object properties is shown in Fig. 2.

For example, the object property hasOutputType is
a functional property defined for the return type of a
method and hasSuperType is a transitive object prop-
erty defined with two transitive sub-properties for class
inheritance and interface implementation. OWL restric-
tions are defined to represent single inheritance in Java
by limiting the maximum cardinality to one while allow-
ing multiple inheritance for Java Interfaces.

Inverse properties are used to define the inverse rela-
tion. For example, the isLocalVariableOf is the inverse
property of hasLocalVariable. This feature is partic-
ularly useful in many situations such as traversing the
resulted RDF graph in both directions and making the
ontology useful for applications that do not depend on
reasoner systems.

In order to properly describe a programming lan-
guage class, we need to describe the various fields defined
in the class. We achieve this by using the property hier-
archy of hasField and its inverse property isFieldOf.
Method overriding is also defined using the functional
object-property methodOverrides and its inverse prop-
erty methodOverriddenBy.

In order to represent aggregation (Whole-Part) rela-
tionships between objects, we include the object prop-
erty hasPart and its inverse isPartOf. This setup cleanly
describes those composite objects that are built from

2 http://protege.stanford.edu/

Fig. 2. Excerpt of SCRO object properties

other constituent objects. The hasPart property is a
sub-property of use, which describes the ‘use’ relation-
ship for class objects that need to be aware of other
objects to carry out their operations.

2.3 Ontology instantiation and knowledge population

After having the ontology structure created with ontol-
ogy concepts and their interrelationships specified, we
need to create a knowledge base that facilitates infer-
encing and contains ontological instances (OWL indi-
viduals) that represent various concepts in the ontol-
ogy. These instances are the building blocks of a knowl-
edge base that can be used for browsing and querying.
An instantiated concept (instance) is a concrete piece of
knowledge. Thus, knowledge population is equivalent to
instance generation that can be achieved by annotating
the raw data source using predefined ontologies [6].

When dealing with a large source-code repository
such as a complex framework, a large number of in-
stances are usually created. Therefore, automatic text-
to-model transformation and knowledge population are
essential. Inspired by the Java RDFizer idea from the

http://protege.stanford.edu/
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Simile project 3, we have built a subsystem that auto-
matically extracts knowledge from Java bytecode. The
original RDFizer was capable of distinguishing only class
types, super types, and basic use relations represented
in a Java class file. Currently, our subsystem performs
a comprehensive parsing of the Java class files specified
by the Java Virtual Machine. It captures every SCRO
concept that represents a source-code element and ef-
fectively generates instances of all ontological proper-
ties defined in SCRO for those program elements. Our
knowledge generator sub-system distinguishes itself as
not being relied on the existence of source code to ex-
tract knowledge. It parses the Java bytecode instead.
This is especially helpful for understanding a software
system without source programs. In the next subsection,
we show a sample output of our knowledge extractor
subsystem and explain some essential concepts.

2.4 Example of OWL Knowledge Base

OWL is essentially a vocabulary extension of RDF. Both
OWL and RDF serve as standard formats for the shar-
ing and integration of data and knowledge [19]. However,
when creating an OWL knowledge base, we need to pro-
vide a clean separation of the explicit OWL vocabulary
with its associated schema definitions from the metadata
encoded in RDF. Therefore, the semantic instances gen-
erated by the knowledge generator subsystem are serial-
ized using RDF and linked to SCRO or any other OWL
ontology (e.g. a design pattern ontology) via OWL reuse
mechanisms.

To this end, the knowledge generator parses a given
library and captures all structural descriptions of its pro-
gram elements. These descriptions are then used to gen-
erate a separate RDF ontology that is compliant with
SCRO’s description of these program elements. This pro-
cess amounts to instantiating an OWL knowledge base
for the target framework. The generated RDF ontology
is represented using Notation3 4 (N3) syntax, which is a
compact and readable serialization of RDF data models.

Listing 1 shows a partial RDF description of a Java
interface obtained through parsing the JHotDraw 5 li-
brary – a Java framework for creating and manipulating
structured 2D vector graphics.

@base <http : // www . indiana . edu / . . . / scro−kb . n3>.
@prefix scro : <http : // www . indi . . . / scro . owl#>.
@prefix rdf : <http : // www . w3 . . . / rdf−syntax−ns#>.
@prefix owl : <http : // www . w3 . org /2002/07/ owl#>.

<http : // www . indi . . . / scro−kb . n3> owl : imports
<http : // www . indi . . . / scro . owl> .

<#org . jhotdraw . framework . Figure>
rdf : type scro : InterfaceType ;

3 http://simile.mit.edu
4 http://www.w3.org/DesignIssues/Notation3
5 http://www.jhotdraw.org/

scro : hasAccessControl scro : public ;
scro : hasSuperType
<#org . jhotdraw . u t i l . Storab le >;
scro : use <#org . jhotdraw . framework . Connector >;
scro : hasAbstractMethod
<#org . jhotdraw . framework . Figure . draw [ . . . . ] > ;

. . . .

. . . .
<#org . jhotdraw . framework . Figure . draw [ . . . . ] >
rdf : type scro : AbstractMethod ;
scro : hasOutputType <#void> ;
scro : hasInputType <#java . awt . Graphics> ;
scro : hasSignature

” org . jhotdraw . framework . Figure . draw [ . . . ] ” ;
scro : hasAccessControl scro : public .

. . . .

. . . .

Listing 1. Partial KB representations and RDF descriptions of
JHotDraw

RDF refers to resources using the Internationalized
Resource Identifier (IRI), which is a generalization of the
Uniform Resource Identifier (URI). The PREFIX clause
associates a prefix label with an IRI and serves as a
local namespace abbreviation for that IRI. The rest of
the statements shown in Listing 1 are descriptions of re-
sources. In RDF terminology, a RDF statement is known
as a triple that consists of a subject, a predicate, and an
object. The subject refers to the resource being described
and the predicate expresses a relationship between the
subject and the object. An object can be either another
resource or a literal value. For example, in the following
triple,

<#org.jhotdraw.framework.Figure>

rdf:type scro:InterfaceType

the interface Figure is the subject, the ontology prop-
erty rdf:type is the predicate, and the ontology class
scro:InterfaceType is the object, where the prefix scro

indicates that scro:InterfaceType is defined in the
SCRO ontology. RDF triples are used to assert facts in
the knowledge base. For example, the above triple asserts
that Figure is indeed an individual of type InterfaceType.
In Description Logic (DL) terminology, a collection of
axioms that represent fact-assertions about concrete re-
sources in the knowledge base is called Assertion Box
(ABox). A set of axioms asserting constraints on the
domain’s vocabulary and its structure is called Termi-
nology Box (TBox). ABox assertions are compliant with
TBox assertions and together they make up the knowl-
edge base.

The underlying data structure of RDF is a labeled
and directed graph that is made from the set of triples
in the knowledge base. Therefore, each node-edge-node
in the RDF graph represents a triple. Fig. 3 shows partial
graph representation of the RDF statements in Listing 1.
This kind of graph representation is used as a basis where
semantic queries are executed against its corresponding
knowledge base.

http://simile.mit.edu
http://www.w3.org/DesignIssues/Notation3
http://www.jhotdraw.org/
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Fig. 3. Partial RDF triple representation of JHotDraw

The following section provides a detailed discussion
of how RDF descriptions are utilized in our approach.
It further explains how our design pattern ontology sub-
models are used with the RDF knowledge base to enable
a semantic-based detection of design patterns.

3 Design Pattern Recovery

Design pattern recovery is inherently a complicated task.
This is due to the fact that patterns are basically abstract
solution templates for common design problems. There-
fore, when implemented in code, a design pattern’s struc-
ture or behavior can take different forms. For example,
when implementing the composite pattern in Java, some
systems may use customized data structure instead of
the collection classes in JDK library for maintaining ob-
ject composition. When implementing visitor, state, and
strategy patterns, some systems may favor delegation-
based technique over the other alternatives.

Due to this abstract nature, design patterns cannot
be effectively detected unless there exist formal, seman-
tic, and explicit representations of both the conceptual
knowledge of software artifacts and the collaborating
participants as well as their roles in design patterns. The
detection mechanism can be seen as a matching between
the two explicit representations. This matching forms
the basis for effective querying and successful retrieval
of pattern instances. In the next subsection, we explain
such ontological representation of design patterns.

3.1 Design Pattern Ontology Models

A proper representation of a design pattern needs to
formalize its structural and behavioral description. This
description includes the patterns’ participating entities,
their instances, roles, and collaborations. Therefore, we
formally specify these aspects by reusing the vocabulary
defined in SCRO and build definitions for each design

Fig. 4. Modular structure of ontology models for design recovery,
linked via owl:imports

pattern. The result is a modular and extensible struc-
ture of OWL ontologies linked together via the regular
OWL reuse mechanisms – owl:imports. This structure
is depicted in Fig. 4.

Essentially, when an ontology imports another on-
tology, all classes, properties, axioms, and individuals
defined in the imported ontology are also available for
use in the importing ontology. Fig. 4 shows that SCRO
is directly imported by a design-pattern ontology. This
ontology describes knowledge common to all design pat-
terns, including concepts that classify design patterns
into behavioral, creational, structural, and other cate-
gories. Further down in the hierarchy, a separate on-
tology is created for each design pattern that describes
its essential participants and their properties, collabo-
rations, restrictions, and the corresponding SWRL rules
needed to detect this pattern. This modular structure
promotes ontology reuse and allows SCRO to be used
for various maintenance-related activities and even with
reasoners that do not support SWRL rules.

At the bottom of the reuse hierarchy, we place the
RDF knowledge repository for a given software library.
This repository is basically the triple store that we ob-
tained via parsing and knowledge extraction as we de-
scribed in Sect. 2.3 and Sect. 2.4. Since the ontology-
import relationship is transitive, all semantic conditions
defined in the upper-level ontologies are now available
in the RDF repository. Therefore, this inference-ready
repository now contains all the knowledge and semantic
descriptions that we need for effective design recovery.

3.2 Design Pattern Detection

As pointed out earlier, when design patterns are im-
plemented in code, they can take different structural
and behavioral forms. This variation in implementation
styles complicates the detection process. However, the
design patterns’ overall structures and the roles of their
participants and interactions should be followed to pre-
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serve the intent and applicability of the patterns. In
our approach, we aim at providing flexibility and trans-
parency such that patterns are specified externally us-
ing ontology formalisms and participants’ responsibili-
ties are depicted using semantic rules that can be eas-
ily understood and modified. After defining SCRO and
the design pattern ontologies, for each design pattern,
we define the SWRL rules that formally describe the
pattern’s structure and behavior. Once these rules are
defined, they are automatically imported into the repos-
itory for the framework in question. All what is needed
next is a domain-independent OWL-DL reasoner that is
capable of computing entailments from the set of facts
and SWRL rules defined in the ontologies.

Design patterns were classified by GoF into three
different groups: structural, behavioral, and creational.
Structural patterns deal with composition of classes and
objects in order to find the simplest ways to realize the
relationships between these entities. Behavioral patterns
deal with ways in which classes or objects interact in or-
der to find the best communication styles among these
entities. Creational patterns deal with object creation
mechanisms in order to create suitable objects for a given
situation. To test the validity of our approach, we have
written SWRL rules for eleven well-known patterns that
span the three pattern groups. The rest of patterns can
be easily supported as well. In the following three sec-
tions, we illustrate our detection mechanism using one
pattern from each group as examples.

3.3 Detecting the Composite Design Pattern

Composite is a structural design pattern that is intended
to reduce design complexity by allowing primitive ob-
jects and complex composition of objects to be treated
uniformly. It composes objects into a tree structure with
one hierarchy of participants so that leaf objects and
composite objects in this hierarchy are treated equally.
The structure of Composite using the Unified Modeling
Language (UML) is depicted in Fig. 5.

Despite the fact that there is a formal structure for
each of the design patterns, there usually exists many ac-
ceptable implementation variations. This phenomenon
is a major obstacle for design pattern recovery and it
can cause a large number of false positives. However,
since it is impossible to account for all implementation
variations, we provide flexibility such that users of our
tool can formally define a variation and then refine it as
needed. Below is an example variant composed of two
sets of conditions for detecting the composite pattern.
For simplicity, we used a simplified set of conditions and
SWRL rules for the composite pattern. Additional vari-
ations can be easily specified and formalized by using
the same procedure. Some of these variations will be
discussed, other possible restrictions including even com-
plex behavioral ones can be easily added to capture other
debated aspects of this pattern.

Fig. 5. Structure of the Composite design pattern in UML

1. The three participants of the composite pattern (leaf,
composite, and component) fall on the same inheri-
tance hierarchy. The component participant can be a
direct or indirect super type of the other two partic-
ipants. Furthermore, the component can be either a
class or an interface. The operation defined in com-
ponent should be overridden or implemented by the
composite and the leaf classes.

2. The composite class is basically a component that
maintains a collection of child elements, typically stored
in a field that represents the composite pattern in-
stance. This container field must have a structured
datatype whose elements are not primitive. This in-
cludes arrays, built-in collection classes, and user-
defined data structures. The datatype of the con-
tainer must also provide child-manipulation methods
for adding or removing children. In particular, the
add operation must have a parameter of the compo-
nent type thus allowing both leaf and composite com-
ponents to be added to the composition. According
to Fig. 5, the child-manipulation methods are also
included in the main component interface. However,
in order to avoid inflating leaf objects, recent imple-
mentations of this pattern tend to push them down
in the composite class.

Preferably, we would like to use OWL-DL to formal-
ize the above constraints. However, Description Logic is
not expressive enough to encode these constraints. This
is due to the fact that OWL and its DL support can only
handle descriptions of infinite number of unstructured
objects connected in a tree-like manner [24]. Therefore,
we use SWRL to handle all non-tree-like situations and
property chaining for design pattern constraints. SWRL
extends OWL-DL with First Order Horn-like rules that
are specified in terms of OWL classes, properties or indi-
viduals. A rule in SWRL is a logical statement about the
ontology with two distinct parts: the antecedent (body)
part and the consequent (head) part, each of which con-
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tains only positive conjunctions of either unary or bi-
nary atoms. In its simple form, a unary atom represents
an OWL class predicate of the form C(var1) and a bi-
nary atom represents an OWL property predicate of the
form P(var1, var2), where both var1 and var2 are
variables over OWL individuals in the knowledge base.
Since each SWRL rule is considered an implication be-
tween the antecedent and the consequent parts of the
rule, the reasoner will carry out the actions specified in
the consequent part (i.e. asserting the consequent part)
only if all the atoms in the antecedent are satisfied.

The following example shows a simple SWRL rule,
where the antecedent part of the rule has a unary atom
and another binary atom and the consequent part has
only one unary atom.

ClassType(?aClass) ∧
hasAbstractMethod(?aClass, ?aMethod)

⇒
AbstractClass(?aClass)

Upon executing the above rule, a reasoner would clas-
sify every knowledge-base instance of type ClassType

that happens to have an abstract method to be an in-
stance of type AbstractClass. This process infers new
facts and enriches the knowledge base with additional
knowledge about these OWL individuals.

Listing 2 shows a sample of three SWRL rules for
detecting the composite pattern. Please refer to SCRO
and the Composite ontology for definitions of the OWL
classes and properties used in this rule.

−−Rule#1 : I d e n t i f y i n g Leaf Candidates :

scro : hasSuperType (? leaf , ? component ) ∧
scro : hasMethod (? component , ?op−component ) ∧
scro : methodOverriddenBy (? op−component , ? op−leaf )∧
scro : isMethodOf (? op−leaf , ?leaf )

=⇒
composite : hasLComponent (? leaf , ? component ) ∧
composite : hasLeafOp (? leaf , ?op−leaf ) ∧
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−Rule#2 : I d e n t i f y i n g Composite Candidates :

composite : hasLComponent (? composite , ? component )∧
scro : hasField (? composite , ? container ) ∧
scro : hasStructuredDataType (? container , ?ctnrDT )∧
scro : hasMethod (? ctnrDT , ?insert ) ∧
scro : methodInvokedBy (? insert , ?add−component ) ∧
scro : isMethodOf (? add−component , ? composite ) ∧
scro : hasInputType (? add−component , ? component )

=⇒
composite : hasContainer (? composite , ? container )∧
composite : hasComponent (? composite , ? component )∧

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−Rule#3 : I d e n t i f y i n g the Composite Pattern :

composite : hasLComponent (? leaf , ? component ) ∧
composite : hasContainer (? composite , ? container )∧
composite : hasComponent (? composite , ? component )

=⇒

composite : hasCompositeClass
(? container , ? composite )∧

composite : hasComponentClass
(? container , ? component )∧

composite : hasLeafClass (? container , ?leaf )

Listing 2. Sample SWRL rule specifications for detecting the
Composite design pattern

The first rule in the listing broadly formalizes the
first set of conditions that we identified for detecting
this pattern. It identifies a candidate for the leaf class
and the component class. In SCRO, the object prop-
erty hasSuperType is made transitive with two transi-
tive sub-properties. Namely inherits for type inheri-
tance and implements for interface implementation. This
transitivity allows the reasoner to infer all direct or indi-
rect supertypes of a given class. In Composite, this tran-
sitivity allows the leaf to be a subtype of the compos-
ite class. The operations defined in the component class
should be implemented by the composite and leaf classes.
In SCRO, the object property methodOverriddenBy and
its inverse property, methodOverrides apply to both
classes and interfaces. In the consequent part of the rule,
hasLComponent is defined in the composite ontology to
identify individuals who are either leaf candidates or
component candidates and assign those individuals to
LeafCandidate and ComponentCandidate ontology classes
that are defined within the composite ontology. The sec-
ond atom identifies the candidates for the operation.

The second rule formalizes the second set of condi-
tions. It extends the first rule with more constraints in
order to identify a composite class candidate. Since all
constraints identified in the first rule for a leaf also apply
to a composite, the first atom in the second rule initially
collects all leaf candidates and make them composite
candidates. It further refines these candidates with more
constraints. The composite class maintains a collection
of child elements, typically stored in a field that repre-
sents the composite pattern instance and this container
field has a structured data type. In SCRO, structured
types are types whose elements are not single data items.
Furthermore, this structured type must provide a insert
method that can be invoked by the composite’s add op-
eration to add additional children into the composition.
Finally, the last atom ensures that the add operation
stores only objects of type component.

Other child-management methods can be implemented
the same way. Note that child-management methods must
be implemented in the composite class and we choose not
to require the component class to declare those methods
and leave that decision to the users.

The third rule ensures that composite effectively del-
egates behavior to its components. It also maximizes
program understanding by identifying and storing all the
participants of this pattern.
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Fig. 6. Structure of the Factory Method design pattern in UML

3.4 Detecting Factory Method

Factory Method is one of the most commonly used cre-
ational patterns. The original structure of this pattern
is depicted in Fig. 6. Factory Method defines an inter-
face for creating objects (products) without specifying
the exact class that will be instantiated. Instead, it lets
subclasses decide what types of objects to instantiate.

Although the idea of Factory Method is simple, de-
tecting this pattern is very challenging. This is due to
the many different implementation variations of this pat-
tern. Again, our approach is flexible enough for users to
formulate customized constraints for this pattern. Be-
low, we provide two sample conditions for detecting the
Factory Method pattern:

1. Creator declares the factory method. This method
is either an abstract or an instance method, which
returns an object of type Product. ConcreteProduct
is a concrete subtype of Product.

2. ConcreteCreator is a concrete subtype of Creator,
which provides a concrete implementation of the fac-
tory method. This factory method overrides its coun-
terpart in the base factory and returns an instance
of a ConcreteProduct.

Listing 3 shows a sample SWRL rule that depicts
the above two conditions. Atoms 1-4 and atoms 5-10 in
the listing formalize the first condition and the second
condition, respectively. The first unary atom in the rule
ensures that ConcreteProduct is a concrete class so it can
be instantiated by ConcreteCreator. The second atom
ensures that a ConcreteProduct is a direct or indirect
subtype of the base Product.

In this rule, we neither require the factory method
in Creator to be an abstract method, nor do we make a
distinction whether the base factory is a concrete class,
an interface, or an abstract class. These are some of
the variations of the Factory Method pattern [15]. The
factory method in Creator can indeed be an instance
method returning a reasonable default concrete product.
We have found evidence of a concrete factory method in
Creator when analyzing sample frameworks. For exam-
ple, in JHotDraw, the method connectorAt() is defined
in the AbstractFigure class to return the default product
(ChopBoxConnector) while the actual factory method in

the concrete class PolyLineFigure returns an instance of
PolyLineConnector.

Atoms 5-10 depict the second condition almost ver-
batim. The factory method instantiates an instance of
ConcreteProduct. This behavior is formalized by requir-
ing a method call for a ConcreteProduct’s constructor
from within the factory method. The consequent part of
the rule identifies each participant of this pattern.

Other variations for implementing this pattern do
exist. For example, Creator may also declare another
method (AnOperation), which calls the factory method
to provide a product object. From our experiences with
frameworks, this is a a uncommon case but it can cer-
tainly be added as an additional restriction. Further-
more, one might want to ensure that there are two dis-
tinct hierarchies, one for ConcreteCreator and another
for ConcreteProduct. This can be achieved in SWRL by
using the differentFrom symbol as follows:

differentFrom (?baseCreator, ?baseProduct)

The flexibility of SCRO’s object properties allows us
to modify the rules easily in order to enforce more con-
straints or relax others. We will see a concrete example
of rule relaxation in the following section.

3.5 Detecting Visitor

Visitor is a behavioral design pattern that allows exter-
nal operations to be performed on the elements of an
object structure while not modifying the classes of the
elements [15]. The idea is to keep the object structure
intact by defining new structures of visitors representing
the new behaviors of interest. As shown in Fig. 7, this
pattern defines two separate class hierarchies: the Vis-
itor hierarchy and the Element or Host hierarchy. The
following are three sample conditions for detecting this
pattern:

1. At the root of the Visitor hierarchy is a Visitor in-
terface common to all concrete visitors. This inter-
face declares the invariant abstract behaviors (visit
methods) that should be implemented by each Con-
creteVisitor. Since each visit method is designed for
a ConcreteHost, the concrete host must be present
as an argument in the corresponding visit method.

2. A ConcreteVisitor is a concrete class type that im-
plements the Visitor interface and overrides each visit
method to implement visitor-specific behavior for the
corresponding ConcreteHost.

3. A ConcreteHost must define the accept instance method
that takes Visitor as an argument. This method im-
plements the double dispatching technique by calling
the matching visit method and passing the host ob-
ject into the visitor.

Listing 4 shows a sample SWRL rule that depicts
the above three conditions for detecting Visitor. Ev-
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1 . scro : ConcreteClass (? concreteProduct ) ∧
2 . scro : hasSuperType (? concreteProduct , ? baseProduct ) ∧
3 . scro : hasMethod (? baseCreator , ? fMethodBase ) ∧
4 . scro : hasOutputType (? fMethodBase , ? baseProduct ) ∧

5 . scro : ConcreteClass (? concreteCreator ) ∧
6 . scro : hasSuperType (? concreteCreator , ? baseCreator ) ∧
7 . scro : hasInstanceMethod (? concreteCreator , ? factoryMethod ) ∧
8 . scro : methodOverrides (? factoryMethod , ? fMethodBase ) ∧
9 . scro : hasConstructor (? concreteProduct , ? cpConstructor ) ∧
10 . scro : invokesMethod (? factoryMethod , ? cpConstructor )

=⇒

11 . FactoryMethod (? factoryMethod ) ∧
12 . hasBaseFactory (? factoryMethod , ? baseCreator ) ∧
13 . hasConcreteFactory (? factoryMethod , ? concreteCreator ) ∧
14 . hasBaseProduct (? factoryMethod , ? baseProduct ) ∧
15 . hasConcreteProduct (? factoryMethod , ? concreteProduct )∧

Listing 3. A sample SWRL rule for detecting the Factory Method pattern

Fig. 7. Structure of the Visitor design pattern in UML

ery constraint is formalized using three different atoms.
The hasInputType OWL object property represents a
method’s formal parameter and the methodOverrides

property applies to both method overriding and inter-
face method implementation. Upon classifying the Vis-
itor ontology and its underlying knowledge base, a rea-
soner with a rule engine would infer and create instances
for the different participants of this design pattern as de-
scribed in the consequent part of the rule.

scro : InterfaceType (? visitor ) ∧
scro : hasAbstractMethod (? visitor , ?visit ) ∧
scro : hasInputType (? visit , ?concrete−host ) ∧

scro : hasSuperType (? concrete−visitor , ? visitor ) ∧
scro : hasInstanceMethod

(? concrete−visitor , ?c−visit ) ∧
scro : methodOverrides (?c−visit , ?visit ) ∧

scro : hasInstanceMethod (? concrete−host , ?accept )∧
scro : hasInputType (? accept , ? visitor ) ∧
scro : invokesMethod (? accept , ?visit )

=⇒
visitor : Visitor (? visitor ) ∧
visitor : hasConcreteVisitor

(? visitor , ?concrete−visitor ) ∧
visitor : hasConcreteHost

(? visitor , ?concrete−host ) ∧
visitor : hasVisitMethod

(? concrete−visitor , ?c−visit ) ∧
visitor : hasAcceptMethod

(? concrete−host , ?accept )

Listing 4. Sample SWRL rule for detecting Visitor

Relaxing or adding more constraints to the require-
ments is relatively simple. For example, one might want
to retrieve pattern instances that declare a supertype
for all concrete hosts in the Host hierarchy. This can
be accomplished by modifying the third condition and
introducing a fourth condition as follows.

3. A ConcreteHost is a subtype of Host. It defines the
accept instance method that overrides the hook method
found in Host. This method implements the double
dispatching mechanism by calling the matching visit
method and passes the host in to the visitor.

4. At the root of the Host hierarchy there is an interface
or abstract class type. It represents the super type
of all concrete hosts. It declares the abstract hook
method, which takes Visitor as an argument.

The result of these modifications is a new rule de-
picted in Listing 5.
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scro : InterfaceType (? visitor ) ∧
scro : hasAbstractMethod (? visitor , ?visit ) ∧
scro : hasInputType (? visit , ?concrete−host ) ∧

scro : hasSuperType (? concrete−visitor , ? visitor ) ∧
scro : hasInstanceMethod

(? concrete−visitor , ?c−visit ) ∧
scro : methodOverrides (?c−visit , ?visit ) ∧

scro : hasSuperType (? concrete−host , ?host ) ∧
scro : hasAbstractMethod (? host , ?hook ) ∧
scro : hasInputType (? hook , ? visitor ) ∧

scro : hasInstanceMethod (? concrete−host , ?accept )∧
scro : methodOverrides (? accept , ?hook ) ∧
scro : invokesMethod (? accept , ?visit )

=⇒
visitor : Visitor (? visitor ) ∧
visitor : hasHost (? visitor , ?host )

. . . . . . . . . . . . . .

Listing 5. Modified SWRL rule for detecting Visitor

4 Tool Implementation and Evaluation

We have implemented the SEMantic PATtern RECovery
(Sempatrec) approach in a tool developed as a plug-in
for the Eclipse IDE. As described in Sect. 2.3, Sempatrec
automatically processes the Java bytecode for a software
library, generates a RDF ontology, and stores the ontol-
ogy locally in a pool of available repositories. This pool
is maintained and managed using the Jena library 6 –an
open-source framework for building Semantic Web appli-
cations. Once this process is completed, Sempatrec uti-
lizes Pellet to provide classification, rule execution, and
reasoning services over the knowledge base. Fig. 8 shows
a snapshot of Sempatrec’s main views in the Eclipse
workbench.

The main view provided by Sempatrec is the pattern-
detection view, which allows the user to select a reposi-
tory (i.e. the RDF ontology for a given framework). Once
the desired ontology is selected, Sempatrec automati-
cally loads the required ontologies, invokes the reasoner
to compute the subsumption class hierarchy, executes
the rules, and runs a series of built-in SPARQL queries
to capture and display the detected pattern instances.
Sempatrec presents the results in an intuitive way: it
uses the descriptions found in the respective ontology
for each design pattern to capture and present the de-
tails of each detected pattern instance, which includes
the participants as well as their relationships and roles
in the design pattern.

Sempatrec uses either the built-in or user-customized
constraints for each supported design pattern. The cus-
tomized constraints can be formulated through a slightly
modified version of the SWRL rules that we used for

6 http://jena.apache.org/

built-in constraints. Currently users cannot use Sempa-
trec to edit the built-in rules. Instead, they can edit the
rules using a specialized ontology editor such as Protégé
and then load them into Sempatrec.

In addition to providing the main pattern-detection
view, Sempatrec also provides other views for visualizing
the upper-level ontologies and for understanding their
conceptual structure. The ultimate goal for Sempatrec is
to provide a comprehensive environment for supporting
library comprehension activities. Currently it provides a
view for editing and running SPARQL queries against
the knowledge base. This view can be used for various
interrogations and search queries against the generated
knowledge base. It can also be used for capturing struc-
tural descriptions of less complex design patterns such
as Template-Method. A sample query that specifies the
constraints of Template-Method using SPARQL condi-
tions is shown in Listing 6.

PREFIX scro : <http : // www . indi . . . / scro . owl#>
SELECT d i s t i n c t ? tMethod ?tClass ? subClass
WHERE {

?tClass a scro : AbstractClass .
?tClass scro : hasInstanceMethod ? tMethod .
?tClass scro : hasAbstractMethod ?op1 .
?op1 scro : hasAccessControl scro : protected .
? tMethod scro : invokesMethod ?op1 .
? subClass scro : inherits ?tClass .
? subClass scro : hasInstanceMethod ?op2 .
?op2 scro : methodOverrides ?op1 .

}

Listing 6. Sample SPARQL query for retrieving Template-
Method instances

Sempatrec provides a facility for performing ontology-
based search [20] over the repository to retrieve various
kinds of source-code artifacts and explore their struc-
tural relationships. The structure provided by the on-
tologies and the generated knowledge can be examined
to reason about the framework’s artifacts and formulate
search queries. For example, consider a developer who is
reusing the JHotDraw framework and wishes to find all
parameterless static methods that return an instance of
interface FigureEnumeration. Listing 7 shows the sample
SPARQL query that answers this question.

PREFIX scro :<http : // www . indi . . . / scro . owl#>
PREFIX JHDraw :<http : // www . indi . . . / JHotDraw . n3#>

SELECT d i s t i n c t ?sm
WHERE {

?sm a scro : StaticMethod .
?sm scro : hasOutputType

JHDraw : org . jhotdraw . frame . FigureEnumeration .
OPTIONAL {?sm scro : hasInputType ?it}
FILTER ( ! bound (? it ) )

}

Listing 7. Sample SPARQL search query

http://jena.apache.org/
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Fig. 8. Sempatrec snapshot: showing the detection view and part of SCRO and Composite taxonomies

4.1 Experimentation with Design Pattern Detection

In this section, we report our experiments for assessing
the benefits of Sempatrec. In particular, we report the
results of analyzing three open-source frameworks. We
also compare Sempatrec’s results with the state-of-the-
art approaches in design pattern recovery. The hypothe-
ses that we test in the experiments include:

H 1 Ontology-based representation of source-code knowl-
edge improves precision of pattern recovery when com-
pared to other static analysis approach (i.e. less false
positives).

H 2 Ontology-based representation of source-code knowl-
edge provides flexibility through semantic rule relaxation,
which can be effective in improving recall of design pat-
tern instances (i.e. less false negatives).

To some extent, the context in which these hypothe-
ses are tested is subject to our interpretation of what
makes a good experiment. Unfortunately, this phenomenon
is the case for all pattern recovery tools because of the
lack of independent benchmark frameworks and trusted
baselines that can be used to evaluate and compare dif-
ferent approaches. However, there are a few well-known

frameworks that are created with design patterns in mind
and come with quite informative design pattern docu-
mentation. Therefore, these frameworks are usually used
for performance evaluation purposes by many pattern
detection tools. We have conducted our experiments on
three of these frameworks: JHotDraw (release 5.1), JU-
nit7 (release 3.7), and JRefactory8 (release 2.6.24) – a
tool for refactoring the internal structure of Java appli-
cations. The frameworks vary in size, represent different
domains, and are known to have instances of the GoF de-
sign patterns. Also, they were used for evaluating other
comparable approaches, which makes them a good fit for
our purpose. Table 1 shows statistics of these frameworks
and the generated knowledge base.

For ease of presentation, we first discuss the results of
detecting the creational and structural design patterns
that are supported by Sempatrec. This experiment also
investigates the effects of rule relaxation and discusses
the results reported by other two approaches – DeMIMA
and SSA. DeMIMA [18] is a multi-layered structural ap-
proach that relies on analyzing source-code structures

7 http://www.junit.org
8 http://jrefactory.sourceforge.net/

http://www.junit.org
http://jrefactory.sourceforge.net/
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Table 1. Statistics about frameworks used in evaluating Sempatrec

JUnit v3.7 JHotDraw v5.1 JRefactory v2.6.24

Number of processed class files 99 172 570

Number of methods 559 1362 4998

Approximate KLOC 3.1 8.4 60

Number of generated OWL individuals 1411 2428 8565

Number of generated RDF triples 10546 23123 87187

Size of the RDF ontology 526KB 1.28MB 5.31MB

and utilizes explanation-based constraint-programming
to identify design motifs. The Similarity Scoring Ap-
proach (SSA) [34] identifies patterns and their variants
using a scoring algorithm to find a match between graph
representation of both pattern descriptions and the soft-
ware system at hand. We chose to compare our results
with both DeMIMA and SSA for multiple reasons. Firstly
the results obtained by both tools are relatively more ef-
fective than other tools. Secondly, these tools were the
most closely related tools with readily available results.
Thirdly, to some extent these tools support same pat-
terns we use in our studies.

Later in the discussion, we present the results of de-
tecting behavioral design patterns after adding a behavioral-
specific approach, DPRE [9], to the set of comparable ap-
proaches. DPRE is a two-phase approach that consists
of static as well as dynamic analysis for detecting behav-
ioral design patterns. The novelties of these approaches
are discussed in details in Sect. 5.

Table 2 shows instance detection statistics for cre-
ational and structural patterns, which are reported by
DeMIMA, SSA, and the results of Sempatrec. For SSA,
the table shows updated results found on the SSA web
site after its initial publication. Table 3 shows the results
for behavioral patterns as well as the results reported by
DPRE.

The interpretation of a pattern instance in Table 2
and Table 3 can be derived from the corresponding rules
for that pattern. For example, a Composite instance rep-
resents the child element’s container, a Decorator in-
stance represents the decorator class, an Observer in-
stance is the notify method, a Visitor instance is the
interface found at the root of the Visitor hierarchy, and
an Adapter instance refers to object adapter which re-
lies on composition as opposed to class adapter which
relies on multiple inheritance. The case for SSA in some
cases is a bit different. SSA counts the template class
as a Template Method instance and the base factory as
a Factory Method instance as opposed to the template
method and the factory method in Sempatrec, respec-
tively. SSA and DPRE also regards an Observer instance
as the subject class as opposed to the notify method.
Therefore, in order to make the experimental results of
different approaches comparable, we have adjusted our
results for these patterns to match those for SSA and

DPRE. For example, in JHotDraw, Sempatrec returned
a total of six Factory Method instances (i.e. six factory
methods) but we reported a total of three instances (i.e.
three base creators that define the six methods). The
case for DeMIMA is unclear since we have no access to
the actual results or the tool, which perhaps explains
the occasional large number of detected instances and
the corresponding low precision.

We evaluate the results using the metrics of precision
and recall [28], which are typically used for evaluating
contemporary information retrieval systems. In this con-
text, these two metrics are defined as follows:

Precision =
Number of True Positives

Number of detected instances

Recall =
Number of True Positives

Number of actual framework instances

where a True Positive is pattern instance that is cor-
rectly detected. In order for an instance to be a true
positive, the instance has to be explicitly stated in the
framework’s documentation or there has to be strong
indications found by inspecting the available code com-
ments or the source-code itself (e.g. through naming of
types and methods). Furthermore, we have consulted
with other trusted resources that document design pat-
tern instances found in popular frameworks. The most
notable resource is the P-MARt [17] public repository,
which contains a database of design pattern information
for selected software projects. In all the tests performed,
none of the inferred pattern instances violates any of
the structural or behavioral constraints that we speci-
fied for the patterns. This gives us confidence that the
knowledge base accurately represents the structure and
behavior of the source code.

However, as noted in Table 2 and Table 3, there are
a few cases where the precision suffers since the identi-
fied instances were considered by our standards as False
Positives. In all these cases, we could not find strong
evidence by inspecting available documentation and the
source code that those inferred instances are indeed true
positives. For example, Table 3 shows that Sempatrec
returned one false positive of Template Method in JHot-
Draw. In particular, class ChangeConnectionHandle in



14 Awny Alnusair et al.: Rule-based Detection of Design Patterns in Program Code

Table 2. Creational and structural pattern detection results and evaluation measures of Sempatrec and other comparable approaches

Sempatrec Sempatrec Relaxed DeMIMA [18] SSA [34]

T1 TP2 FN3 P4 R5 T TP FN P R T TP FN P R T TP FN P R

S
in

g
le
to

n JUnit 0 0 0 na na 0 0 0 na na 0 0 0 na na 0 0 0 na na

JHotDraw 2 2 0 100% 100% 3 2 0 67% 100% 2 2 0 100% 100% 2 2 0 100% 100%

JRefactory 4 4 - 100% - 14 8 - 57% - 4 2 - 14% - 12 8 - 67% -

F
a
c
to

r
y

M
e
th

o
d JUnit 0 0 0 na na 0 0 0 na na 23 0 0 0% na 0 0 0 na na

JHotDraw 3 3 0 100% 100% 3 3 0 100% 100% 189 3 0 2% 100% 2 2 1 100% 67%

JRefactory 2 1 - 50% - 5 3 - 60% - 71 1 - 1% - 1 1 - 100% -

A
b
st
r
a
c
t

F
a
c
to

r
y JUnit 0 0 0 na na 0 0 0 na na 27 0 0 0% na na na na na na

JHotDraw 0 0 0 na na 0 0 0 na na 0 0 0 na na na na na na na

JRefactory 0 0 - na - 3 0 - 0% - 167 0 - 0% - na na na na na

C
o
m

p
o
si
te JUnit 1 1 0 100% 100% 1 1 0 100% 100% 1 1 0 100% 100% 1 1 0 100% 100%

JHotDraw 1 1 0 100% 100% 3 1 0 33% 100% 3 1 0 33% 100% 1 1 0 100% 100%

JRefactory 0 0 - na - 0 0 - na - 0 0 - na - 0 0 - na -

A
d
a
p
te

r JUnit 1 1 0 100% 100% 3 1 0 33% 100% 9 0 1 0% 0% 6 1 0 17% 100%

JHotDraw 18 8 - 45% - 25 10 - 40% - 28 1 - 4% - 23 10 - 44% -

JRefactory 22 13 - 59% - 36 15 - 42% - 47 17 - 36% - 26 17 - 65% -

D
e
c
o
r
a
to

r JUnit 1 1 0 100% 100% 1 1 0 100% 100% 1 1 0 100% 100% 1 1 0 100% 100%

JHotDraw 2 1 2 50% 33% 7 3 0 43% 100% 13 1 2 8% 33% 3 1 2 33% 33%

JRefactory 0 0 - na - 1 0 - 0% - 1 0 - 0% - 0 0 - na -

Average Precision 82.18% 51.92% 26.54% 75.10%

Average Recall 90.43% 100% 88.84% 85.71%

1 Total number of detected instances by Sempatrec and those reported by other approaches
2 Number of detected True Positives
3 Number of False Negatives (Actual number of framework instances - Number of True Positives)
4 Precision value
5 Recall value

package CH.ifa.draw.standard was returned as a tem-
plate class. However, it is not counted as true positive
since we could not find any evidence to support Sempa-
trec’s claim. The only template class that was confirmed
by Sempatrec, SSA, DPRE, PMARt, and the available
documentation is the AbstractFigure class in package
CH.ifa.draw.standard.

Recall statistics, however, are much harder to obtain
since it requires the identification of all False Negatives
– actual pattern instances that were not detected. Most
framework documentation does not explicitly report all
pattern instances. Thus manual identification through
source-code inspection is subject to one’s interpretation
of what constitutes a pattern instance. For large frame-
works such as JRefactory, the task of identifying all pat-
tern instances is cost prohibitive. Thus, the recall infor-
mation for JRefactory is absent from the tables. This is
due to JRefactory’s large size and complexity and that
JRefactory does not have enough internal and external
documentation of its design patterns. Recall information

is also missing for Adapter and State/Strategy patterns
for JHotDraw since we were unable to confirm the ex-
act number of actual instances based on code inspection,
public datasets, or other JHotDraw documents.

Despite the lack of complete information, we have
found some evidence of false negatives in JHotDraw for
observer and decorator patterns. Sempatrec missed two
decorator instances and three observer instances. Af-
ter examining JHotDraw documentation and code in-
spection, we confirmed that the five observer instances
detected by DPRE were indeed true positives. To our
best knowledge, these are the only known true positives,
two of which were detected by Sempatrec. The only ob-
server instance that was detected by Sempatrec, SSA,
and DPRE is the case where a DrawingChangeListener

object acts as an observer to a StandardDrawing object.
The other observer instance inferred by Sempatrec and
confirmed by P-MARt, DeMIMA, and DPRE is that the
interface FigureChangeListener is observing a Figure

object. For decorator, the only instance that was both
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Table 3. Behavioral pattern detection results and evaluation measures of Sempatrec and other comparable approaches

Sempatrec DeMIMA [18] SSA [34] DPRE [9]

T TP FN P R T TP FN P R T TP FN P R T TP FN P R

T
e
m

p
la
te

M
e
th

o
d JUnit 1 1 0 100% 100% 11 0 1 0% 100% 1 1 0 100% 100% na na na na na

JHotDraw 2 1 0 50% 100% 31 1 0 3% 100% 5 1 0 20% 100% 1 1 0 100% 100%

JRefactory 6 6 - 100% - 49 0 - 0% - 17 17 - 100% - 0 0 - na -

O
b
se

r
v
e
r JUnit 1 1 0 100% 100% 4 1 0 25% 100% 1 1 0 100% 100% na na na na na

JHotDraw 4 2 3 50% 40% 7 2 3 29% 40% 3 1 4 33% 20% 9 5 0 56% 100%

JRefactory 0 0 - na - 1 0 - 0% - 0 0 - na - 0 0 - na -

V
is
it
o
r JUnit 0 0 0 na na 0 0 0 na na 0 0 0 na na na na na na na

JHotDraw 0 0 0 na na 0 0 0 na na 0 0 0 na na 0 0 0 na na

JRefactory 2 1 - 50% - 4 2 - 50% - 2 1 - 50% - 2 1 - 50% -

S
ta

te
-

S
tr
a
te

g
y JUnit 4 3 0 75% 100% 8 0 3 0% 0% 3 2 1 67% 67% na na na na na

JHotDraw 39 8 - 21% - 21 6 - 29% - 44 11 - 25% - 79 22 - 29% -

JRefactory 7 0 - 0% - 22 2 - 9% - 11 0 - 0% - 1 1 - 100% -

Average Precision 60.67% 14.50% 55% 67%

Average Recall 88% 67% 77.40% 100%

detected by Sempatrec and SSA is the abstract class
DecoratorFigure, which is used to decorate figures with
borders and other features.

Table 3 also shows that Sempatrec missed some tem-
plate method instances when operated on JRefactory. In
general Sempatrec missed some observer, decorator, and
template method instances caused by overly strict con-
straints. For example, the current constraints for Tem-
plate Method pattern requires the primitive operation
that is called by the template method to be declared
protected. However, this restriction is not a standard re-
quirement. We found evidence of that in both JHotDraw
and JUnit. It is obvious that relaxing this requirement
can help detect the missed instances. This intuition is
confirmed in all three cases. As shown in Table 2, when
we ran Sempatrec with relaxed rules, it was able to re-
cover the missing decorator instances. This offers some
evidence to support the hypothesis H2.

For comparison purpose, we have defined relaxed con-
straints for both observer and the template method pat-
tern. Using these relaxed constraints, Sempatrec inferred
21 template method instances in JRefactory, 13 of which
are confirmed true positives. It also inferred 15 observer
instances in JHotDraw, 5 of which are true positives.
This result provides further support for hypothesis H2.

DeMIMA also provides facilities for relaxing strict
constraints and replacing them with weaker ones through
the use of explanation-based constraint programming in
order to find similar micro-architectures of design motifs.
The flexibility of Sempatrec and DeMIMA in giving the
user full control over specifying patterns in terms of rules
or constraints is indeed an added benefit for pattern de-

tection. In particular, this facility leads to more practical
ways of dealing with issues related to the implementa-
tion variation problems that are discussed in Sect. 3.2.
For example, for Singleton pattern, it is possible to ac-
count for the variations of lazy instantiation or the way
that the static reference is defined by slightly modifying
the corresponding constraints. Note that while relaxed
constraints can reduce false negatives, they may intro-
duce more false positives and result in lower precision
(see Table 2).

In terms of pattern support, there are some differ-
ences between the four approaches. SSA does not sup-
port the Factory Method pattern. SSA and DeMIMA
support the Prototype pattern, which is not supported
by Sempatrec. DPRE supports all behavioral patterns
and nothing else. Moreover, it is the only approach that
differentiates between State and Strategy, all other ap-
proaches treat the two patterns the same way due to
their structural similarity. Therefore, the results shown
in Table 3 for DPRE represent the combined State and
Strategy instances. (e.g. in JHotDraw, DPRE detected
36 State instances and 43 Strategy instances).

Table 2 shows that Sempatrec achieved higher aver-
age precision than other tools for the frameworks in ques-
tion. Therefore, showing strong support for hypothesis
H1. However, Table 3 clearly shows that DPRE achieved
highest precision and recall when detecting behavioral
design patterns in JHotDraw and JRefactory (DPRE
did not report results on JUnit). DPRE is specialized
in detecting behavioral patterns by employing dynamic
analysis techniques, which are helpful in identifying the
order in which messages are communicated among pat-
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tern participants at runtime. The lack of dynamic infor-
mation also explains the existence of some false positives
in the case of Sempatrec, DeMIMA, and SSA. In general,
dynamic information can be effective in detecting be-
havioral patterns if there exist representative sets of test
cases. However, these tests are not always available and
there is no way to determine whether behavioral infor-
mation collected from running the selected test cases is
the typical behavior of the tested code. This may explain
the relatively lower precision of DPRE for detecting ob-
server, state, and strategy patterns in JHotDraw.

As an automatic pattern retrieval tool, Sempatrec
performed quite well for detecting behavioral patterns.
This is in part due to the fact that not all behavioral
patterns have intricate behavioral aspects that require
dynamic analysis. Therefore, we can rely on their strong
structural descriptions for recovery purposes, which can
lead to good results when static information in method
bodies is effectively captured and semantically repre-
sented.

The overall results in Table 2 and Table 3 indicate
that Sempatrec performed well in most cases in terms of
precision and recall, which shows support for hypotheses
H1 and H2. The results also show that there should be
some tradeoff between precision and recall since design
patterns are abstract in nature and their interpretation
is subjective.

We also collected the runtime statistics, which show
that the performance of Sempatrec is within acceptable
range. On an Intel 32-bit processor machine with 512MB
of memory allocated to the Java Virtual Machine, it
took 3 seconds for JUnit, 4 seconds for JHotDraw, and
13.5 seconds for JRefactory to parse the framework, pro-
cess the ontologies, and prepare the knowledge base for
querying. Once this process is done, SPARQL query exe-
cution completes almost instantaneously, with little run-
time overhead. However, the reasoner takes more time
when operating on an ontology with SWRL rules. On
average, the runtime for the reasoner to execute SWRL
rules for all patterns is about 28 seconds on JUnit, 3.6
minutes on JHotDraw, and 11.3 minutes on JRefactory,
which is comparable to other approaches. Note that the
parsing of framework library and generation of the knowl-
edge base is performed only once. Once the reasoner exe-
cutes the rules and generates the classification hierarchy,
any further interrogation of the knowledge base requires
little or no runtime overhead.

The runtime statistics indicate that the runtime for
library parsing, ontology loading, and query execution
is minimal when compared to the runtime for the rea-
soner to classify the ontologies and execute SWRL rules.
Pellet, the ontology reasoner that we used, does not
claim optimal performance. However, it does have an in-
tegrated rule engine that provides a complete and sound
support for SWRL, which adds to runtime overhead.
In fact, Pellet is continuously improving its support for
SWRL. The current experiments were run using Pellet

version 2.3, which have better runtime than our previous
experiments using older versions of Pellet.

Lastly, since rules allow for reasoning with all avail-
able individuals, rule execution time is susceptible to
increase as the number of OWL individuals in the ABox
(assertions that represent ground facts for individual de-
scriptions) as well as the complexity of the rules increase.
In fact, the way the rules are written affects the reason-
ing time. For example, reasoning with unary atoms is
usually less efficient than reasoning with binary atoms
especially in large knowledge bases. SCROs structure al-
lows users to avoid using unary atoms in rules. More-
over, when authoring SWRL rules, one should pay close
attention to the Open World Reasoning (OWR) that
SWRL and OWL supports and most importantly, DL-
safety should be ensured to achieve decidability. DL-Safe
rules [24] are a subset of SWRL rules such that each vari-
able is bound only to known individuals explicitly stated
in the ABox. Over all, we believe that our tool performs
well and will have better performance with more efficient
ontology reasoners.

4.2 Discussion

Our case studies show support for our hypotheses in
terms of achieving better precision and recall for detect-
ing pattern instances. In this subsection, we briefly dis-
cuss a few key points that helped Sempatrec achieve this
outcome.

Firstly, Sempatrec uses a pure ontology-based knowl-
edge representation mechanism which ensures consistent
and formal functional representation of design patterns,
their participants, and the system under study. This rep-
resentation is flexible since it can be used to detect pat-
terns in libraries written in any programming language.
In fact, the ontologies themselves can be extended to
support any applications that reason about rich descrip-
tions of software knowledge. Another key advantage of
the representation is attributed to the fact that descrip-
tions contained in a given ontology can always be ex-
tended with new facts and assertions, which can be from
another ontology. The reasoner can combine the new
knowledge with the existing knowledge base and com-
pute entailments of additional information that was not
explicitly stated.

Secondly, pattern recovery is often complicated by
the implementation variation problem (cf. Sect. 3.2). Us-
ing ontology formalism, this problem can be considerably
mitigated since different variations can be formally spec-
ified as ontology-based metadata and the detection tool
can process the descriptions independently.

On the technical side, Sempatrec is usable and practi-
cal. Pattern descriptions including the roles and interac-
tions of participants are not hard-coded within the tool,
which makes it easy for users to change the role con-
straints without rebuilding the entire tool. Furthermore,
our parser is very effective in capturing all structural and
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behavioral aspects of program code that can be detected
statically.

In all, the approaches we examined in these exper-
iments provided invaluable insights that helped us im-
prove our tool. In fact, Sempatrec is considered in some
ways an extension to some of these works.

4.3 Threats to Validity

There exists several external threats to the validity of
our exploratory experiments. In particular, the validity
of the experiments is limited by the choice and number of
software frameworks used. Firstly, we used frameworks
that we previously knew that they contain considerable
number of various design patterns. Secondly, we exper-
imented with only three frameworks. Although this is
more than the average number for other approaches, pos-
itive outcomes from additional experiments may further
strengthen our conclusions. Thirdly, although we have
used frameworks of varying sizes, we are unable to estab-
lish the scalability of the reasoner’s performance without
testing it on more large-scale framework libraries. In ad-
dition, we have not investigated how the variations of
the SWRL rule encoding of the pattern-detecting con-
straints may affect the precision and recall as well as the
runtime performance of our tool.

Finally, we experimented with only 12 GoF patterns 9.
We followed the lead of other approaches for selecting
these commonly-used and representative patterns that
span the three GoF pattern groups. Although we expect
similar outcomes for the rest of GoF patterns, a more
comprehensive study may yield additional discoveries.

We expect that additional experiments may reduce
some of these threats. In particular, a tool usability and
user experience study may give us insight on how poten-
tial users are interacting with Sempatrec to determine
potential problems with defining customized SWRL rules
for pattern detection. Furthermore, more case studies
with other framework libraries and with alternative rea-
soners would produce more accurate statistics on pre-
cision and recall as well as runtime performance. For
example, our study on JRefactory did not produce any
recall metrics since we are unable to identify all of its
pattern instances due to the lack of design documenta-
tion. Additional experiments when large-scale and well-
documented benchmark libraries become available would
mitigate these threats.

5 Related Work

In this section, we present an overview of the current
state-of-the-art in design pattern recovery. For clarity,

9 The Mediator pattern is also supported but no results included
since Semaptrec did not recover any pattern instances in these
frameworks and other tools do not support this pattern

we broadly categorize the approaches based on their de-
tection strategy for capturing the behavioral aspects of
program code – static analysis or dynamic analysis. For
each approach within a category, we briefly discuss its
methodology and knowledge representation mechanism.

5.1 Static Analysis

Static analysis approaches attempt to build models that
capture the structural aspects of source code such as
class relationships and their dependencies. For example,
Tsantalis et al.[34] proposed a Similarity Scoring Ap-
proach (SSA) for detecting pattern and modified pattern
instances. SSA relies on graph and matrix representation
of both the system under study and design patterns. The
ASM framework is used to parse the Java bytecode and
to populate the matrices for a particular system. This
representation is matched using a similarity scoring al-
gorithm with pattern descriptions that are hard-coded
within the tool.

Other approaches utilize informal annotations and
XML-like mark-up language tags to represent software
knowledge. Rasool and Mäder[30] proposed an approach
based on creating a semi-formal XML-based definitions
of the patterns’ structural features such as classes, their
relationships, and method return types. These feature
definitions are then cataloged and searched using feature-
specific search techniques in order to recover pattern in-
stances. Balanyi and Ferenc [3] proposed an approach
that describes design patterns externally using their own
DPML language – an XML-based pattern description
language. Similar to our approach, users of the system
are granted full control over these descriptions. This ap-
proach relies on analyzing the source code to obtain its
Abstract Semantic Graph (ASG) representation. This
representation is then matched with the DPML descrip-
tions to detect pattern instances. This work was later ex-
tended by applying conventional machine-learning tech-
niques to the results of the previous work in order to
enhance performance and reduce false positives [14].

Our approach to encoding knowledge is primarily
different than XML-based approaches due to the fact
that we define formal ontologies to explicitly describe
and encode software knowledge. In particular, OWL-DL
ontologies have formal foundations backed by Descrip-
tion Logic that enables computing entailments. Conse-
quently, the expressive power and reasoning support pro-
vided by these descriptions enabled us to define reusable
and extensible inference rules and evaluate these rules
using well-defined and established tools.

Closely related to our approach is the Pat system [22],
which uses Prolog rules to recover structural design pat-
terns by utilizing a CASE tool that extracts design in-
formation in C++ code. In particular, design patterns
are described using a variation of Prolog predicates and
information about program elements and their roles are
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represented as Prolog facts. Recently, the Web of Pat-
terns (WOP) proposal [11] and the work presented in [21]
explored the notion of utilizing ontologies for structuring
the source-code knowledge. Although WOP is backed by
a tool implementation for Java code, specific Java fea-
tures that are usually used to detect design patterns (e.g.
inner classes and interfaces) are not supported. However,
the issues with WOP are justified since the primary focus
of the project was to facilitate knowledge sharing about
patterns, anti-patterns, and refactoring. Our aim, how-
ever, is to provide a semantic-based approach for design
pattern detection and to provide an aid for understand-
ing, conceptualizing, and reasoning about source-code
knowledge.

Although these approaches provided valuable insights
into utilizing semantic technologies for pattern detec-
tion, there were no formal ontologies defined or used by
these approaches except the WOP project, which pro-
vided basic ontology templates that must be defined and
extended by users [10]. On the other hand, our work
contributed a thoroughly defined set of OWL-DL on-
tologies that capture design patterns and major features
of object-oriented source code knowledge. We further
provided a mechanism for modularizing and instantiat-
ing these ontologies in order to obtain inference-ready
knowledge bases that are used as basis for improving
the precision of detecting design patterns.

Static analysis approaches can be effective in detect-
ing structural patterns but may fall short when detect-
ing behavioral and some creational patterns. Therefore,
many approaches, including Sempatrec, try to overcome
this limitation by capturing more details about the be-
havioral aspects of source-code such as analyzing method
bodies and method invocations. Examples of these ap-
proaches include DeMIMA [18], DPJF [5], and PINOT [32].
DeMIMA is a semi-automatic approach for detecting
micro-architectures that are similar to design motifs found
in models obtained from source-code. This approach uses
explanation-based constraint programming and constraint
relaxation to identify these micro-architectures in a multi-
layered fashion. The first two layers are devoted for ob-
taining an abstract model of source code including specifics
about classes and various class relationships such as ag-
gregation, association, and use relationships. The third
and final layer identifies design patterns in the obtained
abstract model.

DPJF is based on combining some variations of the
output of other existing detection tools. However, DPFJ
relaxes some of the restrictive conditions used in other
tools and combines structural and behavioral constraints
in order to improve precision and recall. Similar to our
approach, DPFJ utilizes structural and behavioral anal-
ysis on program elements. However, behavioral analy-
sis in DPFJ is performed using Control Flow Graphs
(CFG). This kind of graphs is known to have scalability
issue. Similarly, PINOT represents design patterns us-
ing CFGs. PINOT processes the Abstract Syntax Tree

(AST) of method bodies to build CFG representation for
program elements. The CFG is then examined to verify
the existence of restrictions related to a particular design
pattern.

5.2 Dynamic Analysis

Dynamic analysis approaches [8,9,31,36] utilize infor-
mation obtained through executing and monitoring the
running code in order to get a more accurate realization
of patterns’ behavior at run-time. The goal is to capture
the behavioral relationships that can distinguish differ-
ent patterns with similar structures from each other.

For example, De Lucia et al. [8] proposed an ap-
proach for detecting behavioral design patterns. In this
approach, pattern candidates are initially identified in a
static analysis phase, which involves performing analysis
on class diagrams in order to capture structural informa-
tion about patterns’ participants. The dynamic analysis
phase involves code instrumentation of the candidates
in order to trace their method invocations at run-time.
Pattern behaviors are then verified by monitoring the
execution of the instrumented program on a representa-
tive test suite to obtain the sequence in which relevant
methods are called and the order in which they run.
This approach was further extended [9] by introducing
a model checker that is able to improve the initial set of
identified pattern candidates in the static analysis phase.
This approach was backed by a prototype named DPRE
and validated by applying this tool on a set of behavioral
design patterns.

Wang and Tzerpos [36] proposed a pattern recovery
tool for Eiffel source-code. This approaches uses REQL
scripts to define the static structure and RSF format to
define the dynamic behavior for each design pattern. Sar-
tipi and Hu [31] utilize dynamic analysis to set the stage
for detecting design patterns specified using a special-
ized Pattern Description Language (PDL). Both struc-
tural and approximate matching algorithms are used to
identify pattern instances.

In general, dynamic analysis can be very effective in
detecting behavioral patterns, especially when the detec-
tion tool is backed by a representative and complete set
of test cases for the analyzed frameworks. However, the
issue of selecting representative test cases can be a vi-
able threat to the reliability of dynamic analysis [8]. We
believe that some behavioral design patterns that have
strong structural descriptions such as the visitor pat-
tern can still be detected with the absence of dynamic
data, especially when proper semantic descriptions of
pattern participants are utilized and when static behav-
ioral aspects are effectively captured. Furthermore, due
to the flexibility and usability of semantic-based detec-
tion mechanisms, they can be combined with other ap-
proaches that are based on dynamic analysis in order to
improve the precision of detecting behavioral patterns.
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6 Conclusions and Future Work

We have presented a reverse-engineering approach that
enhances program understanding through the automatic
recovery of design patterns from source code. In this ap-
proach, we relied solely on the semantic representations
of design patterns encoded with ontology constructs and
SWRL rules. We have showed that our approach can
be used for basic ontology-based search over a popu-
lated knowledge base. We demonstrated the utility of the
approach by evaluating our implementation with three
framework libraries. The detection process is based on
logical inference, which only requires a rule-based rea-
soner that is capable of processing SWRL rules. Once
the rules are processed, the reasoner would infer pat-
tern instances based on a matching between the seman-
tic constraints specified in these rules with source-code
descriptions found in a knowledge base representing the
framework at hand. This approach distinguishes itself as
being precise, extensible, and practical.

As a future work, we will investigate the effective-
ness of applying inter-procedural point-to analysis [12]
to detecting behavioral patterns. Point-to analysis can
be used to obtain more precise type information to cap-
ture some aspects of the dynamic behavior of software
libraries. For behavioral patterns, precision is usually en-
hanced by obtaining dynamic information from monitor-
ing activity of the executed program. This enables a de-
tection mechanism to discriminate, for example, the Ob-
server design pattern from the Bridge pattern. Another
future work is to investigate the possible tool extensions
to support the detection of anti-patterns (undesired or
counterproductive design practices) and to identify pos-
sible refactoring opportunities.

An overreaching goal of this work is to develop a
comprehensive semantics-enabled environment that ad-
dresses major software understanding issues. In this en-
vironment, not only ontologies play an effective role in
design recovery, ontologies will also provide effective sup-
port for code refactoring, software component retrieval,
and automatic code recommendation.
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